Assessment of Replacement of Metal Parts by BFRP Composites into a Highly Efficient Electrical Prototype
Abstract
:1. Introduction
2. Original Component
2.1. Geometry and Materials
2.2. Applied Loads
2.3. Finite Element Method
2.4. Finite Element Results
3. Production of the BFRP Component
3.1. Materials and Properties
3.2. Geometry Optimization
3.3. Lay-Up Optimization
3.4. Manufacture of BFRP Component
3.5. Experimental Tests
3.6. FEM of BFRP Component
4. Results and Discussion
4.1. Deformations
4.2. Stresses
4.3. Strains
4.4. Failure
4.5. Comparative Analysis between the Original and the New Component
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Clyne, T.W.; Hull, D. An Introduction to Composite Materials, 3rd ed.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Barbero, E.J. Introduction to Composite Materials Design; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Friedrich, K.; Almajid, A.A. Manufacturing aspects of advanced polymer composites for automotive applications. Appl. Compos. Mater. 2013, 20, 107–128. [Google Scholar] [CrossRef]
- Palmer, R.J. History of Composites in Aeronautics; Wiley Encyclopedia of Composites, John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Szuladziński, G. Performance of composites versus metals under extreme loading. Int. J. Prot. Struct. 2017, 8, 86–108. [Google Scholar] [CrossRef]
- Goubalt, P.; Mayes, S. Comparative Analysis of Metal and Composite Materials for the Primary Structures of a Patrol Craft. Nav. Eng. J. 1996, 108, 387–397. [Google Scholar] [CrossRef]
- Bunsell, A.R. Handbook of Properties of Textile and Technical Fibres, 2nd ed.; Woodhead Publishing: Cambridge, UK, 2018. [Google Scholar]
- Gangil, B.; Ranakoti, L.; Verma, S.; Singh, T.; Kumar, S. Chapter 1: Natural and Synthetic Fibers for Hybrid Composites. In Hybrid Fiber Composites: Materials, Manufacturing, Process Engineering; Khan, A., Rangappa, S.M., Jawaid, M., Siengchin, S., Asiri, A.M., Eds.; Wiley-VCH Verlag GmbH & Co: Hoboken, NJ, USA, 2020. [Google Scholar]
- Begum, S.; Fawzia, S.; Hashmi, M.S.J. Polymer matrix composite with natural and synthetic fibres. Adv. Mater. Process. Technol. 2020, 6, 547–564. [Google Scholar] [CrossRef]
- Lopresto, V.; Leone, C.; De Iorio, I. Mechanical characterisation of basalt fiber reinforced plastic. Compos. Part B Eng. 2011, 42, 717–723. [Google Scholar] [CrossRef]
- Dhand, V.; Mittal, G.; Rhee, K.Y.; Park, S.-J.; Hui, D. A short review on basalt fiber reinforced polymer composites. Compos. Part B Eng. 2014, 12, 166–180. [Google Scholar] [CrossRef]
- Sathishkumar, T.P.; Satheeshkumar, S.; Naveen, J. Glass fiber-reinforced polymer composites—A review. J. Reinf. Plast. Compos. 2014, 33, 1258–1275. [Google Scholar] [CrossRef]
- Singha, K. A short review on basalt fiber. Int. J. Text. Sci. 2012, 1, 19–28. [Google Scholar]
- Basfiber® The Use of Basalt Fiber Products in Construction. Available online: https://basfiber.com/application/construction (accessed on 12 February 2021).
- Bhat, T.; Chevali, V.; Liu, X.; Feih, S.; Mouritz, A.P. Fire structural resistance of basalt fibre composite. Compos. Part A Appl. Sci. Manuf. 2015, 71, 107–115. [Google Scholar] [CrossRef]
- Pavlovski, D.; Mislavsky, B.; Antonov, A. CNG cylinder manufacturers test basalt fiber. Reinf. Plast. 2007, 51, 36–39. [Google Scholar] [CrossRef]
- Qian, X.; Liu, H. The Applications of Basalt Fiber in the Automotive Industry in the Future. Adv. Mat. Res. 2011, 332–334, 723–726. [Google Scholar]
- Fiore, V.; Scalici, T.; Di Bella, G.; Valenza, A. A review on basalt fibre and its composites. Compos. Part B Eng. 2015, 74, 74–94. [Google Scholar] [CrossRef]
- Balaji, K.V.; Shirvanimoghaddam, K.; Rajan, G.S.; Ellis, A.V.; Naebe, M. Surface treatment of Basalt fiber for use in automotive composites. Mater. Today Chem. 2020, 17, 100334. [Google Scholar]
- Basfiber® for Automotive Industry. Available online: https://basfiber.com/system/storage/download/Basalt_fiber_for_automotive_industry_SI.pdf (accessed on 12 February 2021).
- PSEM. Available online: https://psem.ist.utl.pt/index_psem.php?lang=english (accessed on 12 February 2021).
- Greenpower Technical Regulations. Available online: https://www.greenpower.co.uk/sites/default/files/uploads/Technical%20and%20Sporting%20Regulations%202019%20V1.2.pdf (accessed on 12 February 2021).
- KMS—Technical Materials. Available online: https://kms.pt/category/range-of-products/aluminum/?lang=en (accessed on 12 February 2021).
- GE 5 E Radial Spherical Plain Bearings. Available online: https://www.skf.com/group/products/plain-bearings/spherical-plain-bearings-rod-ends/radial/productid-GE%205%20E (accessed on 12 February 2021).
- Solid Edge Software Tutorials. Available online: https://solidedge.siemens.com/en/ (accessed on 12 February 2021).
- Schmid, S.R.; Hamrock, B.J.; Jacobson, B.O. Fundamentals of Machine Elements: SI Version; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- ASTM D 3039—Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials; American Society for Testing and Materials Annual Book of ASTM Standards: West Conshohocken, PA, USA, 2014.
- ASTM D 3518—Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of +/− 45° Laminate; American Society for Testing and Materials Annual Book of ASTM Standards: West Conshohocken, PA, USA, 2001.
- Gebhardt, J.; Fleischer, J. Experimental investigation and performance enhancement of inserts in composite parts. Procedia CIRP 2014, 23, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Akbarpour, S.; Hallstrom, S. Reinforcement around holes in composite materials by use of patched metal inserts. Compos. Struct. 2019, 225, 111084. [Google Scholar] [CrossRef]
Property | Aluminum 7075-T6 |
---|---|
Density (g/cm3) | 2.81 |
Young’s modulus (GPa) | 71.70 |
Poisson ratio | 0.33 |
Tensile strength (MPa) | 572.00 |
Shear modulus (GPa) | 26.90 |
692.30 | 575.58 | 104.30 | 0 |
Property | Epoxy Resin [Supplied by Sicomin] | Basalt Fiber [Supplied by Basaltex NV] |
---|---|---|
Density (g/cm3) | 1.10 | 2.67 |
Young’s modulus (GPa) | 3.20 | 79.30 |
Poisson ratio | 0.35 | 0.26 |
Tensile strength (MPa) | 77.00 | 2900–3100 |
Thickness (mm) | - | 0.13 |
Property | BFRP Composite |
---|---|
Density (g/cm3) | 1.75 ± 0.07 |
E1 = E2 (GPa) | 18.62 ± 0.38 |
Poisson ratio | 0.104 ± 0.03 |
G1 = G2 = G3 (GPa) | 2.9 ± 0.08 |
Volume of fiber (%) | 60.0 |
Ply thickness (mm) | 0.18 |
Tensile Strength (MPa) | 448.4 ± 25.0 |
Shear Strength (MPa) | 62.8 ± 1.7 |
Fracture Strain (mm/mm) | 0.022 ± 0.005 |
Property | Original Geometry | BFRP Alternative Geometries | ||||||
---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | ||
Weight (g) | 40.00 | 28.42 | 31.71 | 31.33 | 62.30 | 36.96 | 25.36 | 32.25 |
Deformation (mm) | 0.02 | 0.68 | 0.40 | 0.26 | 1.30 | 0.04 | 0.71 | 0.06 |
Tensile Stress (MPa) | 66.73 | 207.50 | 131.56 | 115.48 | 542.95 | 32.26 | 243.67 | 37.18 |
Applied Load (kN) | Strain Deviations (%) | ||
---|---|---|---|
Strain Gauge 1 | Strain Gauge 2 | Strain Gauge 3 | |
0.5 | 5.26 | 29.59 | 100.00 |
1.0 | 27.88 | 2.81 | 71.95 |
1.5 | 29.30 | 3.21 | 53.86 |
2.0 | 22.22 | 12.98 | 43.18 |
Property | Original | BFRP | Variation (%) |
---|---|---|---|
Weight (g) | 40.0 | 22.0 | −45 |
Deformation (mm) | 0.02 | 0.09 | 350 |
Stress (MPa) | 66.73 | 58.84 | −31.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marat-Mendes, R.; Ribeira, D.; Reis, L. Assessment of Replacement of Metal Parts by BFRP Composites into a Highly Efficient Electrical Prototype. J. Compos. Sci. 2021, 5, 95. https://doi.org/10.3390/jcs5040095
Marat-Mendes R, Ribeira D, Reis L. Assessment of Replacement of Metal Parts by BFRP Composites into a Highly Efficient Electrical Prototype. Journal of Composites Science. 2021; 5(4):95. https://doi.org/10.3390/jcs5040095
Chicago/Turabian StyleMarat-Mendes, Rosa, Diogo Ribeira, and Luís Reis. 2021. "Assessment of Replacement of Metal Parts by BFRP Composites into a Highly Efficient Electrical Prototype" Journal of Composites Science 5, no. 4: 95. https://doi.org/10.3390/jcs5040095
APA StyleMarat-Mendes, R., Ribeira, D., & Reis, L. (2021). Assessment of Replacement of Metal Parts by BFRP Composites into a Highly Efficient Electrical Prototype. Journal of Composites Science, 5(4), 95. https://doi.org/10.3390/jcs5040095