Mechanical Characterization of Two Dental Restorative Materials after Acidic Challenge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimens Weight
2.2. Surface Microhardness Analysis
2.3. Surface Roughness Analysis
3. Results
3.1. Specimens Weight
3.2. Surface Microhardness Analysis
3.3. Surface Roughness Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yilmaz, E.; Sadeler, R. Effect of artificial aging environment and time on mechanical properties of composite materials. J. Dent. Res. Rev. 2018, 5, 111. [Google Scholar] [CrossRef]
- Ferracane, J.L. Current trends in dental composites. Crit. Rev. Oral Biol. Med. 1995, 6, 302–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spahl, W.; Budzikiewicz, H.; Geurtsen, W. Determination of leachable components from four commercial dental composites by gas and liquid chromatography/mass spectrometry. J. Dent. 1998, 26, 137–145. [Google Scholar] [CrossRef]
- Da Silva, M.A.B.; Vitti, R.P.; Sinhoreti, M.A.; Consani, R.L.; Silva-Junior, J.G.; Tonholo, J. Effect of alcoholic beverages on surface roughness and microhardness of dental composites. Dent. Mater. J. 2016, 35, 621–626. [Google Scholar] [CrossRef] [Green Version]
- Toledano, M.; Osorio, R.; Osorio, E.; Fuentes, V.; Prati, C.; Garcia-Godoy, F. Sorption and solubility of resin-based restorative dental materials. J. Dent. 2003, 31, 43–50. [Google Scholar] [CrossRef]
- Festuccia, M.S.; Garcia Lda, F.; Cruvinel, D.R.; Pires-De-Souza Fde, C. Color stability, surface roughness and microhardness of composites submitted to mouthrinsing action. J. Appl. Oral Sci. 2012, 20, 200–205. [Google Scholar] [CrossRef]
- Briso, A.L.; Caruzo, L.P.; Guedes, A.P.; Catelan, A.; dos Santos, P.H. In vitro evaluation of surface roughness and microhardness of restorative materials submitted to erosive challenges. Oper. Dent. 2011, 36, 397–402. [Google Scholar] [CrossRef]
- Venturini, D.; Cenci, M.S.; Demarco, F.F.; Camacho, G.B.; Powers, J.M. Effect of polishing techniques and time on surface roughness, hardness and microleakage of resin composite restorations. Oper. Dent. 2006, 31, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Voltarelli, F.R.; Santos-Daroz, C.B.; Alves, M.C.; Cavalcanti, A.N.; Marchi, G.M. Effect of chemical degradation followed by toothbrushing on the surface roughness of restorative composites. J. Appl. Oral Sci. 2010, 18, 585–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isaksson, H.; Birkhed, D.; Wendt, L.K.; Alm, A.; Nilsson, M.; Koch, G. Prevalence of dental erosion and association with lifestyle factors in Swedish 20-year olds. Acta Odontol. Scand. 2014, 72, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Tedesco, T.K.; Calvo, A.F.B.; Yoshioka, L.; Fukushima, K.A.; Cesar, P.F.; Raggio, D.P. Does Acid Challenge Affect the Properties and Bond Stability of Restorative Materials on Primary Teeth? J. Adhes. Dent. 2018, 20, 223–231. [Google Scholar] [CrossRef] [PubMed]
- ISO 4287:1997 Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters; International Standard Organization, Technical Commitee: Geneva, Switzerland, 2008; ASME B2046.2001.
- Al-Thobity, A.M.; Gad, M.M.; Farooq, I.; Alshahrani, A.S.; Al-Dulaijan, Y.A. Acid Effects on the Physical Properties of Different CAD/CAM Ceramic Materials: An in Vitro Analysis. J. Prosthodont. 2020. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Yang, H.; Shao, M.Y.; Hu, T.; Zhou, X.D. Dental erosion and severe tooth decay related to soft drinks: A case report and literature review. J. Zhejiang Univ. Sci. B 2009, 10, 395–399. [Google Scholar] [CrossRef] [Green Version]
- Wongkhantee, S.; Patanapiradej, V.; Maneenut, C.; Tantbirojn, D. Effect of acidic food and drinks on surface hardness of enamel, dentine, and tooth-coloured filling materials. J. Dent. 2006, 34, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.J.; Rego, H.M.; Mukhopadhyay, A.; El Najjar, M.; Santos, G.C., Jr. Effect of artificial aging on the surface roughness and microhardness of resin-based materials. Gen. Dent. 2016, 64, e13–e17. [Google Scholar] [PubMed]
- De Moraes, R.R.; Marimon, J.L.; Schneider, L.F.; Sinhoreti, M.A.; Correr-Sobrinho, L.; Bueno, M. Effects of 6 months of aging in water on hardness and surface roughness of two microhybrid dental composites. J. Prosthodont. 2008, 17, 323–326. [Google Scholar] [CrossRef] [PubMed]
- Noble, W.H.; Donovan, T.E.; Geissberger, M. Sports drinks and dental erosion. J. Calif. Dent. Assoc. 2011, 39, 233–238. [Google Scholar]
- İlday, N.; Bayindir, Y.Z.; Erdem, V. Effect of three different acidic beverages on surface characteristics of composite resin restorative materials. Mater. Res. Innov. 2013, 14, 385–391. [Google Scholar] [CrossRef]
- Fatima, N.; Hussain, M. Effect of two different commonly available energy drinks on surface micro hardness of tooth color restorative materials. J. Res. Dent. 2014, 2, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Rajavardhan, K.; Sankar, A.; Kumar, M.; Kumar, K.; Pranitha, K.; Kishore, K. Erosive potential of cola and orange fruit juice on tooth colored restorative materials. Ann. Med. Health Sci. Res. 2014, 4, 208–212. [Google Scholar] [CrossRef] [Green Version]
- Karaman, E.; Tuncer, D.; Firat, E.; Ozdemir, O.S.; Karahan, S. Influence of different staining beverages on color stability, surface roughness and microhardness of silorane and methacrylate-based composite resins. J. Contemp. Dent. Pract. 2014, 15, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Madan, M.; Dua, P.; Saini, S.; Mangla, R.; Kainthla, T.; Dupper, A. Comparative Evaluation of Microhardness by Common Drinks on Esthetic Restorative Materials and Enamel: An in vitro Study. Int. J. Clin. Pediatr. Dent. 2018, 11, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Poggio, C.; Viola, M.; Mirando, M.; Chiesa, M.; Beltrami, R.; Colombo, M. Microhardness of different esthetic restorative materials: Evaluation and comparison after exposure to acidic drink. Dent. Res. J. 2018, 15, 166–172. [Google Scholar] [CrossRef]
- Soderholm, K.J.; Zigan, M.; Ragan, M.; Fischlschweiger, W.; Bergman, M. Hydrolytic degradation of dental composites. J. Dent. Res. 1984, 63, 1248–1254. [Google Scholar] [CrossRef] [PubMed]
- Alshali, R.Z.; Salim, N.A.; Satterthwaite, J.D.; Silikas, N. Long-term sorption and solubility of bulk-fill and conventional resin-composites in water and artificial saliva. J. Dent. 2015, 43, 1511–1518. [Google Scholar] [CrossRef] [PubMed]
- Bamise, C.; Mejabi, M.; Esan, T. Short Term Sorption Effect on three Esthetic Dental Filling Materials in Various Media. Adv. Res. 2015, 5, 1–9. [Google Scholar] [CrossRef]
- Braden, M. Water absorption characteristics of dental microfine composite filling materials. Biomaterials 1984, 5, 373–375. [Google Scholar] [CrossRef]
- Carvalho, F.G.; Sampaio, C.S.; Fucio, S.B.; Carlo, H.L.; Correr-Sobrinho, L.; Puppin-Rontani, R.M. Effect of chemical and mechanical degradation on surface roughness of three glass ionomers and a nanofilled resin composite. Oper. Dent. 2012, 37, 509–517. [Google Scholar] [CrossRef]
- Ferracane, J.L. Hygroscopic and hydrolytic effects in dental polymer networks. Dent. Mater. 2006, 22, 211–222. [Google Scholar] [CrossRef]
- Badra, V.V.; Faraoni, J.J.; Ramos, R.P.; Palma-Dibb, R.G. Influence of different beverages on the microhardness and surface roughness of resin composites. Oper. Dent. 2005, 30, 213–219. [Google Scholar]
- Perez Cdos, R.; Hirata, R.J.; Da Silva, A.H.; Sampaio, E.M.; De Miranda, M.S. Effect of a glaze/composite sealant on the 3-D surface roughness of esthetic restorative materials. Oper. Dent. 2009, 34, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Marigo, L.; Rizzi, M.; La Torre, G.; Rumi, G. 3-D surface profile analysis: Different finishing methods for resin composites. Oper. Dent. 2001, 26, 562–568. [Google Scholar] [PubMed]
- Kakaboura, A.; Fragouli, M.; Rahiotis, C.; Silikas, N. Evaluation of surface characteristics of dental composites using profilometry, scanning electron, atomic force microscopy and gloss-meter. J. Mater. Sci Mater. Med. 2007, 18, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Abu-Bakr, N.; Han, L.; Okamoto, A.; Iwaku, M. Changes in the mechanical properties and surface texture of compomer immersed in various media. J. Prosthet. Dent. 2000, 84, 444–452. [Google Scholar] [CrossRef]
- Ellakuria, J.; Triana, R.; Minguez, N.; Soler, I.; Ibaseta, G.; Maza, J.; Garcia-Godoy, F. Effect of one-year water storage on the surface microhardness of resin-modified versus conventional glass-ionomer cements. Dent. Mater. 2003, 19, 286–290. [Google Scholar] [CrossRef]
- Ibrahim, H. Effects of Various Beverages on Hardness, Roughness, and Solubility of Esthetic Restorative Materials. J. Esthet. Restor. Dent. 2011, 23, 315–322. [Google Scholar] [CrossRef]
- Topaloglu-Ak, A.; Cogulu, D.; Ersin, N.K.; Sen, B.H. Microhardness and surface roughness of glass ionomer cements after APF and TiF4 applications. J. Clin. Pediatr. Dent. 2012, 37, 45–51. [Google Scholar] [CrossRef]
- Karda, B.; Jindal, R.; Mahajan, S.; Sandhu, S.; Sharma, S.; Kaur, R. To Analyse the Erosive Potential of Commercially Available Drinks on Dental Enamel and Various Tooth Coloured Restorative Materials—An In-vitro Study. J. Clin. Diagn. Res. 2016, 10, ZC117. [Google Scholar] [CrossRef]
- Ertas, E.; Guler, A.U.; Yucel, A.C.; Koprulu, H.; Guler, E. Color stability of resin composites after immersion in different drinks. Dent. Mater. J. 2006, 25, 371–376. [Google Scholar] [CrossRef] [Green Version]
Material | Filtek Supreme XTETM (3M ESPETM, St.Paul, MN, USA) | Ketac Universal AplicapTM (3M ESPETM, St. Paul, MN, USA) |
Composition | Non-agglomerated/non-aggregated 20 nm silica filler, non-agglomerated/non-aggregated 4–11 nm zirconia filler, aggregated zirconia/silica cluster filler, UDMA, TEGDMA, bis-EMA, bis-GMA | Powder: ZnO Glass Liquid: water, copolymer of acrylic acid-maleic acid, tartaric acid |
Lot no. | N805469 | 629441 |
Acidic Beverage | Brand | Composition | Lot No. | pH |
---|---|---|---|---|
Water | Caldas de Penacova® (Penacova, Portugal) | Mineralization 32 (±2) mg/L; SiO2 8.9 (±0.4); Cl− 9.9 (±0.4); HCO3− 2.3 (±0.5); SO42− 1,3 (±0.2); NO3− 1.9 (±0.2); Na+ 5.3 (±0.4); Mg2+ 1.1 (±0.2); Ca2+ 0.5 (±0.1) | LD153171 213 LC159171 030 | 5.3 |
Soft drink | Coca-Cola® (The Coca-Cola Company, Spain) | Carbonated water, sugar, colour (caramel E150d), natural flavourings (including caffeine), acidulant (E-338), carbon dioxide (E290) | L9E55:12 L3C08:51 | 1.78 |
Beer | Super Bock® (Unicer, Portugal) | Water, barley malt, unmalted cereals (corn and barley), hops (5.2% vol.) | L2513572 L3144291 | 4.2 |
Material | Glass Ionomer | Composite Resin |
---|---|---|
Water | 0.54 ± 0.02 | 0.45 ± 0.03 |
Soft drink | 0.52 ± 0.02 | 0.48 ± 0.04 |
Beer | 0.54 ± 0.02 | 0.43 ± 0.03 |
Water | Beer | Soft Drink | |||||||
---|---|---|---|---|---|---|---|---|---|
Time | T0 | T1 | T2 | T0 | T1 | T2 | T0 | T1 | T2 |
Glass ionomer | 119.93 ± 11.0 | 104.82 ± 4.24 | 91.54 ± 6.35 | 118.46 ± 9.74 | 86.13 ± 4.23 | 67.43 ± 3.69 | 118.42 ± 9.76 | 82.91 ± 4.72 | 55.66 ± 3.94 |
Composite resin | 89.42 ± 8.00 | 81.16 ± 2.67 | 69.30 ± 5.61 | 91.32 ± 12.53 | 75.60 ± 4.12 | 64.67 ± 4.99 | 87.54 ± 6.22 | 74.67 ± 4.35 | 62.64 ± 4.32 |
Parameter | Water | Beer | Soft Drink | ||||||
---|---|---|---|---|---|---|---|---|---|
Time | T0 | T1 | T2 | T0 | T1 | T2 | T0 | T1 | T2 |
Ra | 0.32 ± 0.11 | 0.36 ± 0.18 | 0.36 ± 0.10 | 0.30 ± 0.09 | 0.41 ± 0.23 | 0.41 ± 0.19 | 0.32 ± 0.10 | 0.53 ± 0.27 | 0.54 ± 0.17 |
Rq | 0.71 ± 0.37 | 0.87 ± 0.50 | 0.87 ± 0.33 | 0.55 ± 0.18 | 0.94 ± 0.72 | 0.94 ± 0.63 | 0.71 ± 0.24 | 1.14 ± 0.78 | 1.14 ± 0.50 |
Rsk | −5.83 ± 2.27 | −6.65 ± 2.42 | −6.55 ± 2.02 | −5.06 ± 3.11 | −5.01 ± 3.09 | −5.01 ± 2.51 | −7.29 ± 2.26 | −3.72 ± 2.47 | −3.73 ± 2.07 |
Parameter | Water | Beer | Soft Drink | ||||||
---|---|---|---|---|---|---|---|---|---|
Time | T0 | T1 | T2 | T0 | T1 | T2 | T0 | T1 | T2 |
Ra | 0.29 ± 0.07 | 0.28 ± 0.08 | 0.28 ± 0.03 | 0.27 ± 0.07 | 0.23 ± 0.06 | 0.23 ± 0.02 | 0.26 ± 0.09 | 0.23 ± 0.09 | 0.23 ± 0.05 |
Rz | 2.66 ± 0.71 | 2.37 ± 0.41 | 2.37 ± 0.71 | 1.93 ± 1.29 | 2.09 ± 0.52 | 2.09 ± 0.37 | 2.36 ± 0.70 | 2.32 ± 0.86 | 2.32 ± 0.60 |
Rq | 0.38 ± 0.01 | 0.38 ± 0.01 | 0.38 ± 0.05 | 0.38 ± 0.03 | 0.38 ± 0.05 | 0.31 ± 0.04 | 0.38 ± 0.01 | 0.35 ± 0.12 | 0.35 ± 0.08 |
Rsk | −1.35 ± 1.04 | −1.15 ± 0.55 | −1.15 ± 0.87 | −1.52 ± 1.15 | −0.58 ± 1.24 | −0.60 ± 0.80 | −1.48 ± 1.71 | −1.63 ± 1.44 | −1.68 ± 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho, A.; Paula, A.; Amaro, I.; Marto, C.M.; Costa, N.; Saraiva, J.; Ferreira, M.M.; Antunes, P.; Carrilho, E. Mechanical Characterization of Two Dental Restorative Materials after Acidic Challenge. J. Compos. Sci. 2021, 5, 31. https://doi.org/10.3390/jcs5010031
Coelho A, Paula A, Amaro I, Marto CM, Costa N, Saraiva J, Ferreira MM, Antunes P, Carrilho E. Mechanical Characterization of Two Dental Restorative Materials after Acidic Challenge. Journal of Composites Science. 2021; 5(1):31. https://doi.org/10.3390/jcs5010031
Chicago/Turabian StyleCoelho, Ana, Anabela Paula, Inês Amaro, Carlos Miguel Marto, Nuno Costa, José Saraiva, Manuel Marques Ferreira, Pedro Antunes, and Eunice Carrilho. 2021. "Mechanical Characterization of Two Dental Restorative Materials after Acidic Challenge" Journal of Composites Science 5, no. 1: 31. https://doi.org/10.3390/jcs5010031
APA StyleCoelho, A., Paula, A., Amaro, I., Marto, C. M., Costa, N., Saraiva, J., Ferreira, M. M., Antunes, P., & Carrilho, E. (2021). Mechanical Characterization of Two Dental Restorative Materials after Acidic Challenge. Journal of Composites Science, 5(1), 31. https://doi.org/10.3390/jcs5010031