UV-Cured Poly(Ethylene Glycol) Diacrylate/Carbon Nanostructure Thin Films. Preparation, Characterization, and Electrical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Samples Characterization
2.4. Electrical Measurements
3. Results
3.1. Scanning Electron Microscopy (SEM)
3.2. Electrical Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cataldi, A.; Corcione, C.E.; Frigione, M.; Pegoretti, A. Photocurable resin/nanocellulose composite coatings for wood protection. Prog. Org. Coat. 2017, 106, 128–136. [Google Scholar] [CrossRef]
- Srivastava, R.; Wolska, J.; Walkowiak-Kulikowska, J.H.; Sun, Y. Fluorinated bis-GMA as potential monomers for dental restorative composite materials. Eur. Polym. J. 2017, 90, 334–343. [Google Scholar] [CrossRef]
- Matveeva, I.A.; Shashkova, T.; Kotova, V.; Stankevich, O.; Zaichenko, L.; Kondratev, N.V.; Ovechkis, Y.N.; Elkhov, V.A.; Pautova, L.V. Features of using photocurable acrylic composition to create the immersion-formed layer for lenticular lenses. Polym. Sci. Ser. D 2016, 9, 123–132. [Google Scholar] [CrossRef]
- Lee, E.K.; Park, C.H.; Lee, J.; Lee, H.R.; Yang, C.; Oh, J.H. Chemically Robust Ambipolar Organic Transistor Array Directly Patterned by Photolithography. Adv. Mater. 2017, 29. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Jin, S.; Zhang, F.; Wang, C.; Wang, Y.; Zhou, C.; Cheng, G.J. 3D stereolithography printing of graphene oxide reinforced complex architectures. Nanotechnology 2015, 26, 43. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Crivello, J.V.; Reichmanis, E. Photopolymer Materials and Processes for Advanced Technologies. Chem. Mater. 2014, 26, 533–548. [Google Scholar] [CrossRef]
- Decker, C. Photoinitiated Crosslinking Photopolymerization. Prog. Polym. Sci. 1996, 21, 593–650. [Google Scholar] [CrossRef]
- Fouassier, J.P.; Rabek, J.F. Radiation Curing in Polymer Science and Technology; Springer: Berlin, Germany, 1993. [Google Scholar]
- Yagci, Y.; Jockusch, S.; Turro, N.J. Photoinitiated Polymerization: Advances, Challenges, and Opportunities. Macromolecules 2010, 43, 6245–6260. [Google Scholar] [CrossRef]
- Li, Z.; Chen, H.; Wang, C.; Chen, L.; Liu, J.; Liu, R. Efficient Photopolymerization of Thick Pigmented Systems Using Upconversion Nanoparticles-Assisted Photochemistry. J. Polym. Sci. Part A Polym. Chem. 2018, 56, 994–1002. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Winey, K.I. Polymer Nanocomposites Containing Carbon Nanotubes. Macromolecules 2006, 39, 5194–5205. [Google Scholar] [CrossRef]
- Kinloch, I.A.; Suhr, J.; Lou, J.; Young, R.J.; Ajayan, P.M. Composites with carbon nanotubes and graphene: An outlook. Science 2018, 362, 547–553. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Silva, M.; Alves, N.M.; Paiva, M.C. Graphene-polymer nanocomposites for biomedical applications. Polym. Adv. Technol. 2018, 29, 687–700. [Google Scholar] [CrossRef]
- Jeong, Y.G.; An, J.E. UV-cured epoxy/graphene nanocomposite films: Preparation, structure and electric heating performance. Polym. Int. 2014, 63, 1895–1901. [Google Scholar] [CrossRef]
- Martin-Gallego, M.; Verdejo, R.; Lopez-Manchado, M.A.; Sangermano, M. Epoxy-Graphene UV-cured nanocomposites. Polymer 2011, 52, 4664–4669. [Google Scholar] [CrossRef][Green Version]
- Yu, B.; Wang, X.; Xing, W.; Yang, H.; Wang, X.; Song, L. Enhanced thermal and mechanical properties of functionalized graphene/thiolene systems by photopolymerization technology. Chem. Eng. J. 2013, 228, 318–326. [Google Scholar] [CrossRef][Green Version]
- Fabbri, P.; Valentini, L.; Bon, L.B.; Foix, D.; Pasquali, L.; Montecchi, M.; Sangermano, M. In-situ graphene oxide reduction during UV-photopolymerization of graphene oxide/acrylic resins mixtures. Polymer 2012, 53, 6039–6044. [Google Scholar] [CrossRef]
- Pei, S.; Cheng, H.M. The reduction of graphene oxide. Carbon 2012, 50, 3210–3228. [Google Scholar] [CrossRef]
- Krutkramelis, K.; Xia, B.; Oakey, J. Monodisperse polyethylene glycol diacrylate hydrogel microsphere formation by oxygen-controlled photopolymerization in a microfluidic device. Lab Chip 2016, 16, 1457–1465. [Google Scholar] [CrossRef]
- Sangermano, M.; Marchi, S.; Valentini, L.; Bon, S.B.; Fabbri, P. Transparent and conductive graphene oxide/poly (ethylene glycol) diacrylate coatings obtained by photopolymerization. Macromol. Mater. Eng. 2011, 296, 401–407. [Google Scholar] [CrossRef]
- Liu, H.; Ryu, S.; Chen, Z.; Steigerwald, M.L.; Nuckolls, C.; Brus, L.E. Photochemical Reactivity of Graphene. J. Am. Chem. Soc. 2009, 131, 17099–17101. [Google Scholar] [CrossRef][Green Version]
- Yunming Ying, Y.; Saini, R.K.; Liang, F.; Sadana, A.K.; Billups, W.E. Functionalization of Carbon Nanotubes by Free Radicals. Org. Lett. 2003, 5, 1471–1473. [Google Scholar] [CrossRef] [PubMed]
- Georgakilas, V.; Bourlinos, A.; Gournis, D.; Tsoufis, T.; Trapalis, C.; Mateo Alonso, A.; Prato, M. Multi-Purposed Organically Modified Carbon Nanotubes: From functionalization to nanotube composites. J. Am. Chem. Soc. 2008, 130, 8733–8740. [Google Scholar] [CrossRef] [PubMed]
- Ligon-Auer, S.C.; Schwentenwein, M.; Gorsche, C.; Stampfl, J.; Liska, R. Toughening of photo-curable polymer networks: A review. Polym. Chem. 2016, 7, 257. [Google Scholar] [CrossRef]
- Ligon, S.C.; Husár, B.; Wutzel, H.; Holman, R.; Liska, R. Strategies to Reduce Oxygen Inhibition in Photoinduced Polymerization. Chem. Rev. 2014, 114, 557–589. [Google Scholar] [CrossRef]
Carbon Nanofillers | Graphene M25 | CNTs | Hybrid 70/30 Graphene M25/CNTs | fCNTs |
---|---|---|---|---|
Mass percentage % w/w | 1.5 | 1.5 | 1.5 | 1.5 |
2.5 | 2.5 | 2.5 | 2.5 | |
4.5 | 4.5 | 4.5 | 4.5 | |
7.5 | 7.5 | 7.5 | 7.5 | |
8.5 | 8.5 | 8.5 | 8.5 |
σs (S·m−1) | ||||
---|---|---|---|---|
w/w | Graphene M25 | CNTs | Hybrid 70/30 | fCNTs |
1 | 0 | 0 | 0 | 0 |
1.5 | 0 | 0.81 (0.37) | 1.23 × 10−3 (7.5 × 10−4) | 0 |
2.5 | 0 | 0.55 (0.13) | 7.75 × 10−3 (0.006) | 7.75 × 10−6 (6.5 × 10−6) |
4.5 | 0.12 (0.06) | 0.90 (0.44) | 0.16 (0.09) | 8.75 × 10−3 (0.013) |
7.5 | 0.18 (0.05) | 7.88 (2.05) | 6.83 (1.51) | 1.66 (0.42) |
8.5 | 6.31 (0.71) | 13.1 (0.65) | 12.3 (0.52) | 2.94 (0.19) |
σt (S·m−1) | ||||
---|---|---|---|---|
% w/w | Graphene M25 | CNTs | Hybrid 70/30 | fCNTs |
0 | 1.88 × 10−7 | 1.88 × 10−7 | 1.88 × 10−7 | 1.88 × 10−7 |
1.5 | 2.17 × 10−7 | 3.63 × 10−6 | 6.88 × 10−7 | 2.86 × 10−6 |
2.5 | 3.16 × 10−7 | 4.01 × 10−6 | 4.78 × 10−5 | 2.15 × 10−6 |
4.5 | 9.88 × 10−5 | 3.70 × 10−4 | 5.08 × 10−5 | 2.71 × 10−6 |
7.5 | 1.40 × 10−5 | 3.75 × 10−5 | 8.71 × 10−5 | 5.89 × 10−5 |
8.5 | 3.25 × 10−3 | 4.87 × 10−3 | 3.39 × 10−4 | 2.38 × 10−5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loginos, P.; Patsidis, A.; Georgakilas, V. UV-Cured Poly(Ethylene Glycol) Diacrylate/Carbon Nanostructure Thin Films. Preparation, Characterization, and Electrical Properties. J. Compos. Sci. 2020, 4, 4. https://doi.org/10.3390/jcs4010004
Loginos P, Patsidis A, Georgakilas V. UV-Cured Poly(Ethylene Glycol) Diacrylate/Carbon Nanostructure Thin Films. Preparation, Characterization, and Electrical Properties. Journal of Composites Science. 2020; 4(1):4. https://doi.org/10.3390/jcs4010004
Chicago/Turabian StyleLoginos, Panagiotis, Anastasios Patsidis, and Vasilios Georgakilas. 2020. "UV-Cured Poly(Ethylene Glycol) Diacrylate/Carbon Nanostructure Thin Films. Preparation, Characterization, and Electrical Properties" Journal of Composites Science 4, no. 1: 4. https://doi.org/10.3390/jcs4010004