Lignin-Mediated Biosynthesis of ZnO and TiO2 Nanocomposites for Enhanced Antimicrobial Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.1.1. Fragmentation of Lignin
2.1.2. Synthesis of FL–ZnO Nanocomposites and Pristine ZnO Nanoparticles.
2.1.3. Synthesis of FL–TiO2 Nanocomposites and Pristine TiO2 Nanoparticles
3. Characterization
Antimicrobial Property of Biosynthesis FL–ZnO and FL–TiO2 Nanomaterial with Pristine ZnO and TiO2 Material
4. Results and Discussions
4.1. Structural Study
4.2. Surface Morphological Studies
4.3. TEM
High-Resolution Transmission Electron Microscopy (HRTEM)
4.4. Optical Study
4.5. Photoluminescence Study of Pristine ZnO, FL–ZnO, Pristine TiO2 and FL–TiO2
5. Antimicrobial Property
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kaul, G.; Kapoor, E.; Dasgupta, A.; Chopra, S. Management of multidrug-resistant tuberculosis in the 21st century. Drugs Today 2019, 55, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Richardson, L.A. Understanding and overcoming antibiotic resistance. PLoS Biol. 2017, 15, e2003775. [Google Scholar] [CrossRef] [PubMed]
- Paule, A.; Frezza, D.; Edeas, M. Microbiota and Phage Therapy: Future Challenges in Medicine. Med. Sci. 2018, 6, 86. [Google Scholar] [CrossRef] [PubMed]
- Spaulding, C.N.; Klein, R.D.; Schreiber, H.L.; Janetka, J.W.; Hultgren, S.J. Precision antimicrobial therapeutics the path of least resistance? NPJ Biofilms Microbiomes 2018, 4, 4. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.J.; Payne, D.J.; Rappuoli, R.; De Gregorio, E. Technologies to Address Antimicrobial Resistance; National Acadamey of Science of United State of America: New Havan, CT, USA,, 2018; Volume 115, pp. 12887–12895. [Google Scholar]
- Gupta, A.; Mumtaz, S.; Li, C.H.; Hussain, I.; Rotello, V.M. Combatting antibiotic-resistant bacteria using nanomaterials. Chem. Soc. Rev. 2019, 48, 415–427. [Google Scholar] [CrossRef]
- Raghunath, A.; Perumal, E. Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int. J. Antimicrob. Agents 2017, 49, 137–152. [Google Scholar] [CrossRef]
- Baranwal, A.; Srivastava, A.; Kumar, P.; Bajpai, V.K.; Maurya, P.K.; Chandra, P. Prospects of Nanostructure Materials and Their Composites as Antimicrobial Agents. Front. Microbiol. 2018, 9, 422. [Google Scholar] [CrossRef] [Green Version]
- Mantravadi, P.K.; Kalesh, K.A.; Dobson, R.C.J.; Hudson, A.O.; Parthasarathy, A. The Quest for Novel Antimicrobial Compounds: Emerging Trends in Research, Development, and Technologies. Antibiotics 2019, 8, E8. [Google Scholar] [CrossRef]
- Mahamuni, P.P.; Patil, M.; Dhanavade, M.J.; Badiger, M.V.; Shadija, P.G.; Lokhande, A.C.; Bohara, R.A. Synthesis and characterization of zinc oxide nanoparticles by using polyol chemistry for their antimicrobial and antibiofilm activity. Biochem. Biophys. Rep. 2018, 17, 71–80. [Google Scholar] [CrossRef]
- Siddiqi, K.S.; Rahman, A.; Tajuddin, U.R.; Husen, A. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes. Nanoscale Res. Lett. 2018, 13, 141. [Google Scholar] [CrossRef]
- Wilhelm, S.; Kaiser, M.; Würth, C.; Heiland, J.; Carrillo-Carrion, C.; Muhr, V.; Wolfbeis, O.S.; Parak, W.J.; Resch-Genger, U.; Hirsch, T. Water dispersible. Upconverting nanoparticles: effects of surface modification on their luminescence and colloidal stability. Nanoscale 2015, 7, 1403–1410. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Kocaefe, D.; Chen, C.; Kocaefe, Y. Review of Research on Template Methods in Preparation of Nanomaterials. J. Nanomater. 2016, 2016, 10. [Google Scholar] [CrossRef]
- Bhandari, S.; Mondal, D.; Nataraj, S.K.; Balakrishna, R.G. Biomolecule-derived quantum dots for sustainable optoelectronics. Nanoscale Adv. 2019, 1, 913–936. [Google Scholar] [CrossRef]
- Wang, J.; Vermerris, W. Antimicrobial nanomaterials derived from natural products—A review. Materials 2016, 9, 255. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Fu, S.; Gan, L. Chapter 2—Structure and Characteristics of Lignin 2019. In Lignin Chemistry and Applications; Elsevier: Atlanta, GA, USA, 2019; pp. 25–50. [Google Scholar]
- Katahira, R.; Elder, T.J.; Beckham, G.T. Chapter 1 A Brief Introduction to Lignin Structure. In Lignin Valorization: Emerging Approaches; The Royal Society of Chemistry: Philadelphia, PA, USA, 2018; Volume 1, p. 20. [Google Scholar]
- Acosta, J.E.; Torres-Chávez, L.P.I.; Wong, B.R.; Saiz, C.M.L.; Leyva, B.M. Antioxidant, Antimicrobial, and Antimutagenic Properties of Technical Lignins and Their Applications. J. BioResour. 2016, 2, 5452–5481. [Google Scholar]
- Vinardell, M.P.; Mitjans, M. Lignins and Their Derivatives with Beneficial Effects on Human Health. Int. J. Mol. Sci. 2017, 18, 1219. [Google Scholar] [CrossRef] [PubMed]
- Gordobil, O.; Herrera, R.; Yahyaoui, M.; Ilk, S.; Kaya, M.; Labidi, J. Potential use of kraft and organosolv lignins as a natural additive for healthcare products. RSC Adv. 2018, 8, 24525–24533. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.; Li, Z. Application of Lignin and Its Derivatives in Adsorption of Heavy Metal Ions in Water: A Review. ACS Sustain. Chem. Eng. 2018, 6, 7181–7192. [Google Scholar] [CrossRef]
- Lora, J.H.; Glasser, W.G. Recent Industrial Applications of Lignin: A Sustainable Alternative to Nonrenewable Materials. J. Polym. Environ. 2002, 10, 39–48. [Google Scholar] [CrossRef]
- Anand, N. Chapter 2.2 Biological Methods; The Indian Pharmacopeia Commission: Ghaziabad, India, 2010; Volume 1, pp. 32–54. ISBN 81-903436-6-1 (VoU). [Google Scholar]
- Joshi, K.M.; Shinde, D.R.; Nikam, L.K.; Panmad, R.; Kale, B.B.; Chaskar, M.G. Fragmented lignin-assisted synthesis of a hierachical ZnO nanostructure for ammonia gas sensing. RSC Adv. 2019, 9, 2487. [Google Scholar] [CrossRef]
- .Rubin, J.E.; Ball, K.R.; Trejo, M.C. Antimicrobial susceptibility of Staphylococcus aureus and Staphylococcus pseudintermedius isolated from various animals. Can. Vet. J. 2011, 52, 153. [Google Scholar] [PubMed]
- Fu, Y.Q.; Luo, J.K.; Nguyen, N.T.; Walton, A.J.; Flewitt, A.J.; Zu, X.T.; Du, H. Advances in piezoelectric thin films for acoustic biosensors, acoustofluidics and lab-on-chip applications. Prog. Mater. Sci. 2017, 89, 31–91. [Google Scholar] [CrossRef] [Green Version]
- Miao, T.T.; Sun, D.X.; Guo, Y.R.; Li, C.; Li, Y.; Ma, G.Z. Low temperature precipitation synthesis of flower like ZnO with lignin amine and its optical properties. Nanoscale Res. Lett. 2013, 8, 431. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.F.; Ansari, A.H.; Hameedullah, M.; Ahmad, E.; Husain, F.M.; Zia, Q.; Zaheer, B.M.R.; Alams, M.M.; Khan, A.M.; Alothman, Z.A.; et al. Sole-gel synthesis of thorn like ZnO nanoparticles endorosing mechanical stirring effect and their antimicrobial activity: Potential role as nano-antibiotics. Sci. Rep. 2016, 6, 27689. [Google Scholar] [CrossRef] [PubMed]
- Roy, J.S.; Majumder, T.P.; Dabrowski, R. Photoluminescence behavior of TiO2 nanoparticles doped with liquid crustal. J. Mol. Struct. 2015, 1098, 351–354. [Google Scholar] [CrossRef]
- Faixl, O.; Grunwald, C.; Beinhoff, O. Determination of phenolic Hydroxylic group content of Milled Wood Lignins (MWUs) Different Botanical Origins Using Selective Aminolysis, FTIR, and UVSpectoscopy. Int. J. Biol. Chem. Phys. Technol. Wood 1992, 46, 428. [Google Scholar]
- Haque, F.Z.; Nandanwar, R.; Singh, P. Evaluating photodegradation properties of anatase and rutile TiO2 nanoparticles for organic compounds. Optik 2017, 128, 191–200. [Google Scholar] [CrossRef]
- Shi, L.; Shen, H.; Jiang, L.; Li, X. Co-emission of UV, violet and green photoluminescence of ZnO/TiO2 thin film. Mater. Lett. 2007, 61, 4735–4737. [Google Scholar] [CrossRef]
- Chithra, M.J.; Sathya, M.; Pushpanathan, K. Effect of pH on Crystal Size and Photoluminescence Property by Chemical Precipitation Method; Springer: New Delhi, India, 2015; Volume 28, p. 3. [Google Scholar]
- Kim, B.Y.S.; Rutka, J.T.; Chan, W.C.W. Effect of Coumarate 3-zhydroxylase Down regulation on lignin structure. Nanomed. N. Engl. J. Med. 2010, 363, 2434–2443. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Swamy, M.K.; Umar, A.; Abdullah, A.; Sahli, A. Biosynthesis and characterization of silver nanoparticles from methanol leaf extract of Cassia didymobotyra and assessment of their antioxidant and antibacterial activities. Nanosci. Nanotechnol. 2015, 15, 1–6. [Google Scholar] [CrossRef]
- Rudramurthy, G.R.; Swamy, M.K.; Sinniah, U.R.; Ghasemzadeh, A. Nanoparticles: Alternatives against drug-resistant. Molecules 2016, 21, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Ryu, D.; Choi, S.; Lee, D. Antibacterial activity of silver- nanoparticles against Staphylococcus aureus and Escherichia coli. Korea J. Microbiol. Biotechnol. 2011, 39, 77–85. [Google Scholar]
- Mohamed, M.M.; Fouad, S.A.; Elshoky, H.A.; Mohammed, G.M.; Alaheldin, T.A. Antibacterial effect of gold nanoparticles against Corynebacterium pseudotuberculosis. Int. J. Vet. Sci. Med. 2017, 5, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, G.J.; sánchez, M.E.; martínez, A.R.; Ruiz, F.; Jasso, M.E.C. Antimicrobial properties of copper nanoparticles and amino acid chelated copper nanoparticles produced by using a soya extract. Bioinorgan. Chem. Appl. 2017, 15, 17. [Google Scholar]
- Naseem, T.; Farrukh, M.A. Antibacterial activity of Green synthesis of iron nanoparticles using lawsonia inermis and gardenia jasminoides leaves extract. J. Chem. 2015, 2015, 7. [Google Scholar] [CrossRef]
- Jesline, A.; John, P.N.; Narayanan, P.M.; Vani, C.; Murugan, S. Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillinresistant Staphylococcus aureus. Appl. Nanosci. 2015, 5, 157–162. [Google Scholar] [CrossRef]
- Ren, G.; Hu, D.; Cheng, E.W.C.; Vargas-reus, M.A.; Reip, P.; Allaker, R.P. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents 2009, 33, 587–590. [Google Scholar] [CrossRef] [PubMed]
- Ismail, R.A.; Sulaiman, G.M.; Abdulrahman, S.A.; Marzoog, T.R. Antibacterial activity of magnetic iron oxide nanoparticles synthesised by laser ablation in liquid. Mater. Sci. Eng. C 2015, 53, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, H.; Menon, S.; Kumar, S.V.; Rajeshkumar, S. Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chemico-Biol. Interact. 2018, 286, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.V.; Mehta, K.K.; Worley, K.; Dordick, J.S.; Kane, R.S.; Wan, L.Q. Carbon nanotube-induced loss of multicellular chirality on micropatternedsubstrate is mediated by oxidative stress. ACS Nano 2014, 8, 2196–2205. [Google Scholar] [CrossRef]
- Reddy, L.S.; Nisha, M.M.; Joice, M.; Shilpa, P.N. Antimicrobial activity of zinc oxide(ZnO) nanoparticle against Klebsiella pneumoniae. Pharm. Biol. 2014, 52, 1388–1397. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wu, C.; Aronstam, R.S. Toxicity of transition metal oxide nanoparticles: recent insights from in vitro studies. Materials 2010, 3, 4842–4859. [Google Scholar] [CrossRef] [PubMed]
- Boeriu, C.G.; Bravo, D.; Gosselink, R.J.; van Dam, J.E. Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind. Crops Prod. 2004, 20, 205–218. [Google Scholar] [CrossRef]
- Singh, A.V.; Ferri, M.; Tamplenizza, M.; Borghi, F.; Divitini, G.; Ducati, C.; Lenardi, C.; Piazzoni, C.; Merlini, M.; Podest, A.; et al. Bottom- up engineering of the suface roughness of nanostructured cubic zirconia to control cell adhesion. Nanotechnology 2012, 23, 475101. [Google Scholar] [CrossRef] [PubMed]
- Padmavathy, N.; Vijayaraghavan, R. Enhanced bioactivity of ZnO nanoparticles—An antimicrobial study. Sci. Technol. Adv. Mater. 2008, 9, 035004. [Google Scholar] [CrossRef] [PubMed]
- Gosselink, R.; Snijder, M.; Kranenbarg, A.; Keijsers, E.; de Jong, E.; Stigsson, L.L. Characterisation and application of NovaFiber lignin. Ind. Crops Prod. 2004, 20, 191–203. [Google Scholar] [CrossRef]
- Janaki, A.C.; Sailatha, E.; Gunasekaran, S. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 144, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Nagajyothi, P.C.; Sreekanth, T.V.M.; Tettey, C.O.; Jun, Y.I.; Mook, S.H. Characterization, antibacterial, antioxidant, and cytotoxic activities of ZnO nanoparticles using Coptidis rhizoma. Bioorg. Med. Chem. Lett. 2014, 24, 4298–4303. [Google Scholar] [CrossRef]
- Tiwari, V.; Mishra, N.; Gadani, K.; Solanki, P.S.; Shah, N.A.; Tiwari, M. Mechanism of Anti-bacterial Activity of Zinc Oxide Nanoparticle Against Carbapenem-Resistant Acinetobacter baumannii. Front. Microbiol. 2018, 9, 1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pesci, F.M.; Wang, G.; Klug, D.R.; Li, Y.; Cowan, A.J. Efficient Suppression of Electron–Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO2 Nanowires for Photoelectrochemical Water Splitting. J. Phys. Chem. C 2013, 117, 25837–25844. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samb-Joshi, K.M.; Sethi, Y.A.; Ambalkar, A.A.; Sonawane, H.B.; Rasale, S.P.; Panmand, R.P.; Patil, R.; Kale, B.B.; Chaskar, M.G. Lignin-Mediated Biosynthesis of ZnO and TiO2 Nanocomposites for Enhanced Antimicrobial Activity. J. Compos. Sci. 2019, 3, 90. https://doi.org/10.3390/jcs3030090
Samb-Joshi KM, Sethi YA, Ambalkar AA, Sonawane HB, Rasale SP, Panmand RP, Patil R, Kale BB, Chaskar MG. Lignin-Mediated Biosynthesis of ZnO and TiO2 Nanocomposites for Enhanced Antimicrobial Activity. Journal of Composites Science. 2019; 3(3):90. https://doi.org/10.3390/jcs3030090
Chicago/Turabian StyleSamb-Joshi, Kanchan M., Yogesh A. Sethi, Anuradha A. Ambalkar, Hiralal B. Sonawane, Suresh P. Rasale, Rajendra P. Panmand, Rajendra Patil, Bharat B. Kale, and Manohar G. Chaskar. 2019. "Lignin-Mediated Biosynthesis of ZnO and TiO2 Nanocomposites for Enhanced Antimicrobial Activity" Journal of Composites Science 3, no. 3: 90. https://doi.org/10.3390/jcs3030090
APA StyleSamb-Joshi, K. M., Sethi, Y. A., Ambalkar, A. A., Sonawane, H. B., Rasale, S. P., Panmand, R. P., Patil, R., Kale, B. B., & Chaskar, M. G. (2019). Lignin-Mediated Biosynthesis of ZnO and TiO2 Nanocomposites for Enhanced Antimicrobial Activity. Journal of Composites Science, 3(3), 90. https://doi.org/10.3390/jcs3030090