Next Article in Journal
pH-Sensitive Hydrogel from Polyethylene Oxide and Acrylic acid by Gamma Radiation
Previous Article in Journal
Manufacturing-Induced Imperfections in Composite Parts Manufactured via Automated Fiber Placement
Open AccessArticle

Mechanical Properties of Cellulose Nanocrystal (CNC) Bundles: Coarse-Grained Molecular Dynamic Simulation

School of Civil Engineering, Stevens Institute of Technology, Hoboken, NJ 07030-5991, USA
*
Author to whom correspondence should be addressed.
J. Compos. Sci. 2019, 3(2), 57; https://doi.org/10.3390/jcs3020057
Received: 19 April 2019 / Revised: 13 May 2019 / Accepted: 27 May 2019 / Published: 3 June 2019
Cellulose nanocrystals (CNCs) is a promising biodegradable nanomaterial with outstanding physical, chemical, and mechanical properties for many applications. Although aligned CNCs can self-assemble into bundles, their mechanical performance is reduced by interfacial strength between CNCs and a twisted structure. In this paper, we employ developed coarse-grained (CG) molecular dynamic (MD) simulations to investigate the influence of twist and interface energy on the tensile performance of CNC bundles. CNC bundles of different sizes (number of particles) are tested to also include the effect of size on mechanical performance. The effect of interfacial energy and twist on the mechanical performance shows that elastic modulus, strength, and toughness are more sensitive to twisted angle than interfacial energy. In addition, the effect of size on the bundle and twist on their mechanical performance revealed that both size and twist have a significant effect on the results and can reduce the strength and elastic modulus by 75% as a results of covalent bond dissociation. In addition, a comparison of the broken regions for different values of twist shows that by increasing the twist angle the crack propagates in multiple locations with a twisted shape. View Full-Text
Keywords: cellulose Iβ; twist; bundle; interface energy; coarse-grained; molecular dynamics cellulose Iβ; twist; bundle; interface energy; coarse-grained; molecular dynamics
Show Figures

Figure 1

MDPI and ACS Style

Ramezani, M.G.; Golchinfar, B. Mechanical Properties of Cellulose Nanocrystal (CNC) Bundles: Coarse-Grained Molecular Dynamic Simulation. J. Compos. Sci. 2019, 3, 57.

AMA Style

Ramezani MG, Golchinfar B. Mechanical Properties of Cellulose Nanocrystal (CNC) Bundles: Coarse-Grained Molecular Dynamic Simulation. Journal of Composites Science. 2019; 3(2):57.

Chicago/Turabian Style

Ramezani, Majid G.; Golchinfar, Behnoush. 2019. "Mechanical Properties of Cellulose Nanocrystal (CNC) Bundles: Coarse-Grained Molecular Dynamic Simulation" J. Compos. Sci. 3, no. 2: 57.

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop