Vestibular Rehabilitation after Vestibulopathy Focusing on the Application of Virtual Reality
Abstract
1. Introduction
2. Human Posture Control
3. Vestibular Rehabilitation
4. Bilateral Vestibulopathy
5. Virtual Reality (VR)
6. Discussion
7. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- Hall, C.D.; Herdman, S.J.; Whitney, S.L.; Cass, S.P.; Clendaniel, R.A.; Fife, T.D.; Furman, J.M.; Getchius, T.S.; Goebel, J.A.; Shepard, N.T.; et al. Vestibular Rehabilitation for Peripheral Vestibular Hypofunction: An Evidence-Based Clinical Practice Guideline: FROM THE AMERICAN PHYSICAL THERAPY ASSOCIATION NEUROLOGY SECTION. J. Neurol. Phys. Ther. 2016, 40, 124–155. [Google Scholar] [CrossRef] [PubMed]
- Horak, F.B.; Shupert, C.L.; Mirka, A. Components of postural dyscontrol in the elderly: A review. Neurobiol. Aging 1989, 10, 727–738. [Google Scholar] [CrossRef]
- Gribble, P.A.; Hertel, J. Effect of lower-extremity muscle fatigue on postural control. Arch. Phys. Med. Rehabil. 2004, 85, 589–592. [Google Scholar] [CrossRef] [PubMed]
- Peterka, R.J. Sensory integration for human balance control. Handb. Clin. Neurol. 2018, 159, 27–42. [Google Scholar] [PubMed]
- Peterka, R.J. Sensorimotor integration in human postural control. J. Neurophysiol. 2002, 88, 1097–1118. [Google Scholar] [CrossRef] [PubMed]
- Strupp, M.; Arbusow, V.; Dieterich, M.; Sautier, W.; Brandt, T. Perceptual and oculomotor effects of neck muscle vibration in vestibular neuritis. Ipsilateral somatosensory substitution of vestibular function. Brain 1998, 121, 677–685. [Google Scholar] [CrossRef]
- Horak, F.B. Postural compensation for vestibular loss and implications for rehabilitation. Restor. Neurol. Neurosci. 2010, 28, 57–68. [Google Scholar] [CrossRef]
- Cooksey, F. Rehabilitation in vestibular injuries. Proc. R. Soc. Med. 1946, 39, 273–278. [Google Scholar] [CrossRef]
- Cawthorne, T. The physiological basis for head exercises. J. Chart. Soc. Physiother. 1944, 30, 106–107. [Google Scholar]
- Krebs, D.E.; Gill-Body, K.M.; Riley, P.O.; Parker, S.W. Double-blind, placebo-controlled trial of rehabilitation for bilateral vestibular hypofunction: Preliminary report. Otolaryngol. Head Neck Surg. 1993, 109, 735–741. [Google Scholar] [CrossRef]
- McDonnell, M.N.; Hillier, S.L. Vestibular rehabilitation for unilateral peripheral vestibular dysfunction. Cochrane Database Syst. Rev. 2015, 1, CD005397. [Google Scholar] [CrossRef] [PubMed]
- Whitney, S.L.; Alghwiri, A.A.; Alghadir, A. An overview of vestibular rehabilitation. Handb. Clin. Neurol. 2016, 137, 187–205. [Google Scholar]
- Curthoys, I.S.; Halmagyi, G.M. Vestibular compensation. Adv. Otorhinolaryngol. 1999, 55, 82–110. [Google Scholar] [PubMed]
- Herdman, S.J. Advances in the treatment of vestibular disorders. Phys. Ther. 1997, 77, 602–618. [Google Scholar] [CrossRef] [PubMed]
- Horak, F.B.; Jones-Rycewicz, C.; Black, F.O.; Shumway-Cook, A. Effects of vestibular rehabilitation on dizziness and imbalance. Otolaryngol. Head Neck Surg. 1992, 106, 175–180. [Google Scholar] [CrossRef]
- Herdman, S.J. Role of vestibular adaptation in vestibular rehabilitation. Otolaryngol. Head Neck Surg. 1998, 119, 49–54. [Google Scholar] [CrossRef]
- Schubert, M.C.; Zee, D.S. Saccade and vestibular ocular motor adaptation. Restor. Neurol. Neurosci. 2010, 28, 9–18. [Google Scholar] [CrossRef]
- Schubert, M.C.; Della Santina, C.C.; Shelhamer, M. Incremental angular vestibulo-ocular reflex adaptation to active head rotation. Exp. Brain Res. 2008, 191, 435–446. [Google Scholar] [CrossRef]
- Herdman, S.J.; Hall, C.D.; Schubert, M.C.; Das, V.E.; Tusa, R.J. Recovery of dynamic visual acuity in bilateral vestibular hypofunction. Arch. Otolaryngol. Head Neck Surg. 2007, 133, 383–389. [Google Scholar] [CrossRef]
- Herdman, S.J.; Schubert, M.C.; Das, V.E.; Tusa, R.J. Recovery of dynamic visual acuity in unilateral vestibular hypofunction. Arch. Otolaryngol. Head Neck Surg. 2003, 129, 819–824. [Google Scholar] [CrossRef]
- Pavlou, M.; Lingeswaran, A.; Davies, R.A.; Gresty, M.A.; Bronstein, A.M. Simulator based rehabilitation in refractory dizziness. J. Neurol. 2004, 251, 983–995. [Google Scholar] [CrossRef]
- Klatt, B.N.; Carender, W.J.; Lin, C.C.; Alsubaie, S.F.; Kinnaird, C.R.; Sienko, K.H.; Whitney, S.L. A Conceptual Framework for the Progression of Balance Exercises in Persons with Balance and Vestibular Disorders. Phys. Med. Rehabil. Int. 2015, 2, 1044. [Google Scholar]
- Eleftheriadou, A.; Skalidi, N.; Velegrakis, G.A. Vestibular rehabilitation strategies and factors that affect the outcome. Eur. Arch. Otorhinolaryngol. 2012, 269, 2309–2316. [Google Scholar] [CrossRef]
- Lucieer, F.; Vonk, P.; Guinand, N.; Stokroos, R.; Kingma, H.; van de Berg, R. Bilateral Vestibular Hypofunction: Insights in Etiologies, Clinical Subtypes, and Diagnostics. Front. Neurol. 2016, 7, 26. [Google Scholar] [CrossRef]
- Baloh, R.W.; Jacobson, K.; Honrubia, V. Idiopathic bilateral vestibulopathy. Neurology 1989, 39, 272–275. [Google Scholar] [CrossRef]
- Ward, B.K.; Agrawal, Y.; Hoffman, H.J.; Carey, J.P.; Della Santina, C.C. Prevalence and impact of bilateral vestibular hypofunction: Results from the 2008 US National Health Interview Survey. JAMA Otolaryngol. Head Neck Surg. 2013, 139, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Zingler, V.C.; Cnyrim, C.; Jahn, K.; Weintz, E.; Fernbacher, J.; Frenzel, C.; Brandt, T.; Strupp, M. Causative factors and epidemiology of bilateral vestibulopathy in 255 patients. Ann. Neurol. 2007, 61, 524–532. [Google Scholar] [CrossRef]
- Strupp, M.; Kim, J.S.; Murofushi, T.; Straumann, D.; Jen, J.C.; Rosengren, S.M.; Della Santina, C.C.; Kingma, H. Bilateral vestibulopathy: Diagnostic criteria Consensus document of the Classification Committee of the Bárány Society. J. Vestib. Res. 2017, 27, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, Y.; Van de Berg, R.; Wuyts, F.; Walther, L.; Magnusson, M.; Oh, E.; Sharpe, M.; Strupp, M. Presbyvestibulopathy: Diagnostic criteria Consensus document of the classification committee of the Bárány Society. J. Vestib. Res. 2019, 29, 161–170. [Google Scholar] [CrossRef]
- Schniepp, R.; Schlick, C.; Schenkel, F.; Pradhan, C.; Jahn, K.; Brandt, T.; Wuehr, M. Clinical and neurophysiological risk factors for falls in patients with bilateral vestibulopathy. J. Neurol. 2017, 264, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Balaban, C.D. Neural substrates linking balance control and anxiety. Physiol. Behav. 2002, 77, 469–475. [Google Scholar] [CrossRef]
- Balaban, C.D.; Thayer, J.F. Neurological bases for balance-anxiety links. J. Anxiety Disord. 2001, 15, 53–79. [Google Scholar] [CrossRef]
- Brandt, T.; Schautzer, F.; Hamilton, D.A.; Brüning, R.; Markowitsch, H.J.; Kalla, R.; Darlington, C.; Smith, P.; Strupp, M. Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans. Brain 2005, 128 Pt 11, 2732–2741. [Google Scholar] [CrossRef]
- Gray, J.A.; McNaughton, N. The neuropsychology of anxiety: Reprise. Nebr. Symp. Motiv. 1996, 43, 61–134. [Google Scholar] [PubMed]
- Neo, P.; Carter, D.; Zheng, Y.; Smith, P.; Darlington, C.; McNaughton, N. Septal elicitation of hippocampal theta rhythm did not repair cognitive and emotional deficits resulting from vestibular lesions. Hippocampus 2012, 22, 1176–1187. [Google Scholar] [CrossRef] [PubMed]
- Gurvich, C.; Maller, J.J.; Lithgow, B.; Haghgooie, S.; Kulkarni, J. Vestibular insights into cognition and psychiatry. Brain Res. 2013, 1537, 244–259. [Google Scholar] [CrossRef]
- Balaban, C.D.; Jacob, R.G.; Furman, J.M. Neurologic bases for comorbidity of balance disorders, anxiety disorders and migraine: Neurotherapeutic implications. Expert Rev. Neurother. 2011, 11, 379–394. [Google Scholar] [CrossRef]
- Lithgow, B.J.; Moussavi, Z.; Gurvich, C.; Kulkarni, J.; Maller, J.J. Fitzgerald PB. Bipolar disorder in the balance. Eur. Arch. Psychiatry Clin. Neurosci. 2019, 269, 761–775. [Google Scholar] [CrossRef]
- Lucieer, F.; Duijn, S.; van Rompaey, V.; Pérez Fornos, A.; Guinand, N.; Guyot, J.P.; Kingma, H.; van de Berg, R. Full Spectrum of Reported Symptoms of Bilateral Vestibulopathy Needs Further Investigation-A Systematic Review. Front. Neurol. 2018, 9, 352. [Google Scholar] [CrossRef]
- Porciuncula, F.; Johnson, C.C.; Glickman, L.B. The effect of vestibular rehabilitation on adults with bilateral vestibular hypofunction: A systematic review. J. Vestib. Res. 2012, 22, 283–298. [Google Scholar] [CrossRef]
- Strupp, M.; Feil, K.; Dieterich, M.; Brandt, T. Bilateral vestibulopathy. Handb. Clin. Neurol. 2016, 137, 235–240. [Google Scholar] [PubMed]
- Lehnen, N.; Kellerer, S.; Knorr, A.G.; Schlick, C.; Jahn, K.; Schneider, E.; Heuberger, M.; Ramaioli, C. Head-Movement-Emphasized Rehabilitation in Bilateral Vestibulopathy. Front. Neurol. 2018, 9, 562. [Google Scholar] [CrossRef]
- Herdman, S.J.; Hall, C.D.; Maloney, B.; Knight, S.; Ebert, M.; Lowe, J. Variables associated with outcome in patients with bilateral vestibular hypofunction: Preliminary study. J. Vestib. Res. 2015, 25, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.E.; Whitney, S.L.; Wrisley, D.M.; Furman, J.M. Physical therapy outcomes for persons with bilateral vestibular loss. Laryngoscope 2001, 111, 1812–1817. [Google Scholar] [CrossRef]
- Gillespie, M.B.; Minor, L.B. Prognosis in bilateral vestibular hypofunction. Laryngoscope 1999, 109, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Herdman, S.J.; Hall, C.D.; Delaune, W. Variables associated with outcome in patients with unilateral vestibular hypofunction. Neurorehabil. Neural. Repair. 2012, 26, 151–162. [Google Scholar] [CrossRef]
- Song, J.J. Virtual Reality for Vestibular Rehabilitation. Clin. Exp. Otorhinolaryngol. 2019, 12, 329–330. [Google Scholar] [CrossRef] [PubMed]
- Ashiri, M.; Lithgow, B.; Suleiman, A.; Blakley, B.; Mansouri, B.; Moussavi, Z. Differences Between Physical vs. Virtual Evoked Vestibular Responses. Ann. Biomed. Eng. 2020, 48, 1241–1255. [Google Scholar] [CrossRef]
- Ashiri, M.; Lithgow, B.; Mansouri, B.; Moussavi, Z. Comparison between vestibular responses to a physical and virtual reality rotating chair. In Proceedings of the 11th Augmented Human International Conference, Winnipeg, MB, Canada, 27–29 May 2020; Volume 16, pp. 1–4. [Google Scholar]
- Keshavarz, B.; Riecke, B.E.; Hettinger, L.J.; Campos, J.L. Vection and visually induced motion sickness: How are they related? Front. Psychol. 2015, 6, 472. [Google Scholar] [CrossRef] [PubMed]
- Palmisano, S.; Allison, R.S.; Schira, M.M.; Barry, R.J. Future challenges for vection research: Definitions, functional significance, measures, and neural bases. Front. Psychol. 2015, 6, 193. [Google Scholar] [CrossRef]
- Ashiri, M.; Lithgow, B.; Suleiman, A.; Mansouri, B.; Moussavi, Z. Quantitative measures of the visually evoked sensation of body movement in space (Vection) using Electrovestibulography (EVestG). Virtual Real. 2020. [Google Scholar] [CrossRef]
- Hettinger, L.J.; Berbaum, K.S.; Kennedy, R.S.; Dunlap, W.P.; Nolan, M.D. Vection and simulator sickness. Mil. Psychol. 1990, 2, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Smart, L.J., Jr.; Stoffregen, T.A.; Bardy, B.G. Visually induced motion sickness predicted by postural instability. Hum. Factors 2002, 44, 451–465. [Google Scholar] [CrossRef]
- Dieterich, M.; Bense, S.; Stephan, T.; Yousry, T.A.; Brandt, T. fMRI signal increases and decreases in cortical areas during small-field optokinetic stimulation and central fixation. Exp. Brain Res. 2003, 148, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Viirre, E. Vestibular telemedicine and rehabilitation. Applications for virtual reality. Stud. Health Technol. Inform. 1996, 29, 299–305. [Google Scholar]
- Kramer, P.D.; Roberts, D.C.; Shelhamer, M.; Zee, D.S. A versatile stereoscopic visual display system for vestibular and oculomotor research. J. Vestib. Res. 1998, 8, 363–379. [Google Scholar] [CrossRef]
- Micarelli, A.; Viziano, A.; Micarelli, B.; Augimeri, I.; Alessandrini, M. Vestibular rehabilitation in older adults with and without mild cognitive impairment: Effects of virtual reality using a head-mounted display. Arch. Gerontol. Geriatr. 2019, 83, 246–256. [Google Scholar] [CrossRef]
- Park, J.H.; Jeon, H.J.; Lim, E.C.; Koo, J.W.; Lee, H.J.; Kim, H.J.; Lee, J.S.; Song, C.G.; Hong, S.K. Feasibility of Eye Tracking Assisted Vestibular Rehabilitation Strategy Using Immersive Virtual Reality. Clin. Exp. Otorhinolaryngol. 2019, 12, 376–384. [Google Scholar] [CrossRef]
- Gottshall, K.R.; Sessoms, P.H.; Bartlett, J.L. Vestibular physical therapy intervention: Utilizing a computer assisted rehabilitation environment in lieu of traditional physical therapy. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2012, 2012, 6141–6144. [Google Scholar]
- Hondebrink, M.S.; Mert, A.; van der Lint, R.; de Ru, J.A.; van der Wurff, P. Motion-based equilibrium reprocessing therapy a novel treatment method for chronic peripheral vestibulopathies: A pilot study. Medicine 2017, 96, e7128. [Google Scholar] [CrossRef]
- Viirre, E.; Sitarz, R. Vestibular rehabilitation using visual displays: Preliminary study. Laryngoscope 2002, 112, 500–503. [Google Scholar] [CrossRef] [PubMed]
- Rosiak, O.; Krajewski, K.; Woszczak, M.; Jozefowicz-Korczynska, M. Evaluation of the effectiveness of a Virtual Reality-based exercise program for Unilateral Peripheral Vestibular Deficit. J. Vestib. Res. 2018, 28, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Sparrer, I.; Duong Dinh, T.A.; Ilgner, J.; Westhofen, M. Vestibular rehabilitation using the Nintendo® Wii Balance Board—A user-friendly alternative for central nervous compensation. Acta Otolaryngol. 2013, 133, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Yeh, S.C.; Chen, S.; Wang, P.C.; Su, M.C.; Chang, C.H.; Tsai, P.Y. Interactive 3-dimensional virtual reality rehabilitation for patients with chronic imbalance and vestibular dysfunction. Technol. Health Care 2014, 22, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.Y.; Fang, T.Y.; Yeh, S.C.; Su, M.C.; Wang, P.C.; Wang, V.Y. Three-dimensional, virtual reality vestibular rehabilitation for chronic imbalance problem caused by Ménière’s disease: A pilot study. Disabil. Rehabil. 2017, 39, 1601–1606. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.P.; Ganança, M.M.; Cusin, F.S.; Tomaz, A.; Ganança, F.F.; Caovilla, H.H. Vestibular rehabilitation with virtual reality in Ménière’s disease. Braz. J. Otorhinolaryngol. 2013, 79, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Viziano, A.; Micarelli, A.; Augimeri, I.; Micarelli, D.; Alessandrini, M. Long-term effects of vestibular rehabilitation and head-mounted gaming task procedure in unilateral vestibular hypofunction: A 12-month follow-up of a randomized controlled trial. Clin. Rehabil. 2019, 33, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Micarelli, A.; Viziano, A.; Augimeri, I.; Micarelli, D.; Alessandrini, M. Three-dimensional head-mounted gaming task procedure maximizes effects of vestibular rehabilitation in unilateral vestibular hypofunction: A randomized controlled pilot trial. Int. J. Rehabil. Res. 2017, 40, 325–332. [Google Scholar] [CrossRef]
- Bergeron, M.; Lortie, C.L.; Guitton, M.J. Use of Virtual Reality Tools for Vestibular Disorders Rehabilitation: A Comprehensive Analysis. Adv. Med. 2015, 2015, 916735. [Google Scholar] [CrossRef]
- Suleiman, A.; Lithgow, B.J.; Anssari, N.; Ashiri, M.; Moussavi, Z.; Mansouri, B. Correlation between Ocular and Vestibular Abnormalities and Convergence Insufficiency in Post-Concussion Syndrome. Neuroophthalmology 2020, 44, 157–167. [Google Scholar] [CrossRef]
- Xie, M.; Zhou, K.; Patro, N.; Chan, T.; Levin, M.; Gupta, M.K.; Archibald, J. Virtual Reality for Vestibular Rehabilitation: A Systematic Review. Otol. Neurotol. 2021. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, M.; Murofushi, T. Vestibular rehabilitation to bilateral vestibulopathy. Equilib. Res. 2021, in press. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsumura, M.; Murofushi, T. Vestibular Rehabilitation after Vestibulopathy Focusing on the Application of Virtual Reality. J. Otorhinolaryngol. Hear. Balance Med. 2021, 2, 5. https://doi.org/10.3390/ohbm2020005
Matsumura M, Murofushi T. Vestibular Rehabilitation after Vestibulopathy Focusing on the Application of Virtual Reality. Journal of Otorhinolaryngology, Hearing and Balance Medicine. 2021; 2(2):5. https://doi.org/10.3390/ohbm2020005
Chicago/Turabian StyleMatsumura, Masashi, and Toshihisa Murofushi. 2021. "Vestibular Rehabilitation after Vestibulopathy Focusing on the Application of Virtual Reality" Journal of Otorhinolaryngology, Hearing and Balance Medicine 2, no. 2: 5. https://doi.org/10.3390/ohbm2020005
APA StyleMatsumura, M., & Murofushi, T. (2021). Vestibular Rehabilitation after Vestibulopathy Focusing on the Application of Virtual Reality. Journal of Otorhinolaryngology, Hearing and Balance Medicine, 2(2), 5. https://doi.org/10.3390/ohbm2020005