Vestibular Rehabilitation after Vestibulopathy Focusing on the Application of Virtual Reality
Abstract
:1. Introduction
2. Human Posture Control
3. Vestibular Rehabilitation
4. Bilateral Vestibulopathy
5. Virtual Reality (VR)
6. Discussion
7. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- Hall, C.D.; Herdman, S.J.; Whitney, S.L.; Cass, S.P.; Clendaniel, R.A.; Fife, T.D.; Furman, J.M.; Getchius, T.S.; Goebel, J.A.; Shepard, N.T.; et al. Vestibular Rehabilitation for Peripheral Vestibular Hypofunction: An Evidence-Based Clinical Practice Guideline: FROM THE AMERICAN PHYSICAL THERAPY ASSOCIATION NEUROLOGY SECTION. J. Neurol. Phys. Ther. 2016, 40, 124–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horak, F.B.; Shupert, C.L.; Mirka, A. Components of postural dyscontrol in the elderly: A review. Neurobiol. Aging 1989, 10, 727–738. [Google Scholar] [CrossRef]
- Gribble, P.A.; Hertel, J. Effect of lower-extremity muscle fatigue on postural control. Arch. Phys. Med. Rehabil. 2004, 85, 589–592. [Google Scholar] [CrossRef] [PubMed]
- Peterka, R.J. Sensory integration for human balance control. Handb. Clin. Neurol. 2018, 159, 27–42. [Google Scholar] [PubMed]
- Peterka, R.J. Sensorimotor integration in human postural control. J. Neurophysiol. 2002, 88, 1097–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strupp, M.; Arbusow, V.; Dieterich, M.; Sautier, W.; Brandt, T. Perceptual and oculomotor effects of neck muscle vibration in vestibular neuritis. Ipsilateral somatosensory substitution of vestibular function. Brain 1998, 121, 677–685. [Google Scholar] [CrossRef]
- Horak, F.B. Postural compensation for vestibular loss and implications for rehabilitation. Restor. Neurol. Neurosci. 2010, 28, 57–68. [Google Scholar] [CrossRef]
- Cooksey, F. Rehabilitation in vestibular injuries. Proc. R. Soc. Med. 1946, 39, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Cawthorne, T. The physiological basis for head exercises. J. Chart. Soc. Physiother. 1944, 30, 106–107. [Google Scholar]
- Krebs, D.E.; Gill-Body, K.M.; Riley, P.O.; Parker, S.W. Double-blind, placebo-controlled trial of rehabilitation for bilateral vestibular hypofunction: Preliminary report. Otolaryngol. Head Neck Surg. 1993, 109, 735–741. [Google Scholar] [CrossRef]
- McDonnell, M.N.; Hillier, S.L. Vestibular rehabilitation for unilateral peripheral vestibular dysfunction. Cochrane Database Syst. Rev. 2015, 1, CD005397. [Google Scholar] [CrossRef] [PubMed]
- Whitney, S.L.; Alghwiri, A.A.; Alghadir, A. An overview of vestibular rehabilitation. Handb. Clin. Neurol. 2016, 137, 187–205. [Google Scholar]
- Curthoys, I.S.; Halmagyi, G.M. Vestibular compensation. Adv. Otorhinolaryngol. 1999, 55, 82–110. [Google Scholar] [PubMed]
- Herdman, S.J. Advances in the treatment of vestibular disorders. Phys. Ther. 1997, 77, 602–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horak, F.B.; Jones-Rycewicz, C.; Black, F.O.; Shumway-Cook, A. Effects of vestibular rehabilitation on dizziness and imbalance. Otolaryngol. Head Neck Surg. 1992, 106, 175–180. [Google Scholar] [CrossRef]
- Herdman, S.J. Role of vestibular adaptation in vestibular rehabilitation. Otolaryngol. Head Neck Surg. 1998, 119, 49–54. [Google Scholar] [CrossRef]
- Schubert, M.C.; Zee, D.S. Saccade and vestibular ocular motor adaptation. Restor. Neurol. Neurosci. 2010, 28, 9–18. [Google Scholar] [CrossRef]
- Schubert, M.C.; Della Santina, C.C.; Shelhamer, M. Incremental angular vestibulo-ocular reflex adaptation to active head rotation. Exp. Brain Res. 2008, 191, 435–446. [Google Scholar] [CrossRef] [Green Version]
- Herdman, S.J.; Hall, C.D.; Schubert, M.C.; Das, V.E.; Tusa, R.J. Recovery of dynamic visual acuity in bilateral vestibular hypofunction. Arch. Otolaryngol. Head Neck Surg. 2007, 133, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Herdman, S.J.; Schubert, M.C.; Das, V.E.; Tusa, R.J. Recovery of dynamic visual acuity in unilateral vestibular hypofunction. Arch. Otolaryngol. Head Neck Surg. 2003, 129, 819–824. [Google Scholar] [CrossRef] [Green Version]
- Pavlou, M.; Lingeswaran, A.; Davies, R.A.; Gresty, M.A.; Bronstein, A.M. Simulator based rehabilitation in refractory dizziness. J. Neurol. 2004, 251, 983–995. [Google Scholar] [CrossRef]
- Klatt, B.N.; Carender, W.J.; Lin, C.C.; Alsubaie, S.F.; Kinnaird, C.R.; Sienko, K.H.; Whitney, S.L. A Conceptual Framework for the Progression of Balance Exercises in Persons with Balance and Vestibular Disorders. Phys. Med. Rehabil. Int. 2015, 2, 1044. [Google Scholar]
- Eleftheriadou, A.; Skalidi, N.; Velegrakis, G.A. Vestibular rehabilitation strategies and factors that affect the outcome. Eur. Arch. Otorhinolaryngol. 2012, 269, 2309–2316. [Google Scholar] [CrossRef]
- Lucieer, F.; Vonk, P.; Guinand, N.; Stokroos, R.; Kingma, H.; van de Berg, R. Bilateral Vestibular Hypofunction: Insights in Etiologies, Clinical Subtypes, and Diagnostics. Front. Neurol. 2016, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Baloh, R.W.; Jacobson, K.; Honrubia, V. Idiopathic bilateral vestibulopathy. Neurology 1989, 39, 272–275. [Google Scholar] [CrossRef]
- Ward, B.K.; Agrawal, Y.; Hoffman, H.J.; Carey, J.P.; Della Santina, C.C. Prevalence and impact of bilateral vestibular hypofunction: Results from the 2008 US National Health Interview Survey. JAMA Otolaryngol. Head Neck Surg. 2013, 139, 803–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zingler, V.C.; Cnyrim, C.; Jahn, K.; Weintz, E.; Fernbacher, J.; Frenzel, C.; Brandt, T.; Strupp, M. Causative factors and epidemiology of bilateral vestibulopathy in 255 patients. Ann. Neurol. 2007, 61, 524–532. [Google Scholar] [CrossRef]
- Strupp, M.; Kim, J.S.; Murofushi, T.; Straumann, D.; Jen, J.C.; Rosengren, S.M.; Della Santina, C.C.; Kingma, H. Bilateral vestibulopathy: Diagnostic criteria Consensus document of the Classification Committee of the Bárány Society. J. Vestib. Res. 2017, 27, 177–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrawal, Y.; Van de Berg, R.; Wuyts, F.; Walther, L.; Magnusson, M.; Oh, E.; Sharpe, M.; Strupp, M. Presbyvestibulopathy: Diagnostic criteria Consensus document of the classification committee of the Bárány Society. J. Vestib. Res. 2019, 29, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Schniepp, R.; Schlick, C.; Schenkel, F.; Pradhan, C.; Jahn, K.; Brandt, T.; Wuehr, M. Clinical and neurophysiological risk factors for falls in patients with bilateral vestibulopathy. J. Neurol. 2017, 264, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Balaban, C.D. Neural substrates linking balance control and anxiety. Physiol. Behav. 2002, 77, 469–475. [Google Scholar] [CrossRef]
- Balaban, C.D.; Thayer, J.F. Neurological bases for balance-anxiety links. J. Anxiety Disord. 2001, 15, 53–79. [Google Scholar] [CrossRef]
- Brandt, T.; Schautzer, F.; Hamilton, D.A.; Brüning, R.; Markowitsch, H.J.; Kalla, R.; Darlington, C.; Smith, P.; Strupp, M. Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans. Brain 2005, 128 Pt 11, 2732–2741. [Google Scholar] [CrossRef]
- Gray, J.A.; McNaughton, N. The neuropsychology of anxiety: Reprise. Nebr. Symp. Motiv. 1996, 43, 61–134. [Google Scholar] [PubMed]
- Neo, P.; Carter, D.; Zheng, Y.; Smith, P.; Darlington, C.; McNaughton, N. Septal elicitation of hippocampal theta rhythm did not repair cognitive and emotional deficits resulting from vestibular lesions. Hippocampus 2012, 22, 1176–1187. [Google Scholar] [CrossRef] [PubMed]
- Gurvich, C.; Maller, J.J.; Lithgow, B.; Haghgooie, S.; Kulkarni, J. Vestibular insights into cognition and psychiatry. Brain Res. 2013, 1537, 244–259. [Google Scholar] [CrossRef] [Green Version]
- Balaban, C.D.; Jacob, R.G.; Furman, J.M. Neurologic bases for comorbidity of balance disorders, anxiety disorders and migraine: Neurotherapeutic implications. Expert Rev. Neurother. 2011, 11, 379–394. [Google Scholar] [CrossRef] [Green Version]
- Lithgow, B.J.; Moussavi, Z.; Gurvich, C.; Kulkarni, J.; Maller, J.J. Fitzgerald PB. Bipolar disorder in the balance. Eur. Arch. Psychiatry Clin. Neurosci. 2019, 269, 761–775. [Google Scholar] [CrossRef]
- Lucieer, F.; Duijn, S.; van Rompaey, V.; Pérez Fornos, A.; Guinand, N.; Guyot, J.P.; Kingma, H.; van de Berg, R. Full Spectrum of Reported Symptoms of Bilateral Vestibulopathy Needs Further Investigation-A Systematic Review. Front. Neurol. 2018, 9, 352. [Google Scholar] [CrossRef] [Green Version]
- Porciuncula, F.; Johnson, C.C.; Glickman, L.B. The effect of vestibular rehabilitation on adults with bilateral vestibular hypofunction: A systematic review. J. Vestib. Res. 2012, 22, 283–298. [Google Scholar] [CrossRef]
- Strupp, M.; Feil, K.; Dieterich, M.; Brandt, T. Bilateral vestibulopathy. Handb. Clin. Neurol. 2016, 137, 235–240. [Google Scholar] [PubMed]
- Lehnen, N.; Kellerer, S.; Knorr, A.G.; Schlick, C.; Jahn, K.; Schneider, E.; Heuberger, M.; Ramaioli, C. Head-Movement-Emphasized Rehabilitation in Bilateral Vestibulopathy. Front. Neurol. 2018, 9, 562. [Google Scholar] [CrossRef]
- Herdman, S.J.; Hall, C.D.; Maloney, B.; Knight, S.; Ebert, M.; Lowe, J. Variables associated with outcome in patients with bilateral vestibular hypofunction: Preliminary study. J. Vestib. Res. 2015, 25, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.E.; Whitney, S.L.; Wrisley, D.M.; Furman, J.M. Physical therapy outcomes for persons with bilateral vestibular loss. Laryngoscope 2001, 111, 1812–1817. [Google Scholar] [CrossRef]
- Gillespie, M.B.; Minor, L.B. Prognosis in bilateral vestibular hypofunction. Laryngoscope 1999, 109, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Herdman, S.J.; Hall, C.D.; Delaune, W. Variables associated with outcome in patients with unilateral vestibular hypofunction. Neurorehabil. Neural. Repair. 2012, 26, 151–162. [Google Scholar] [CrossRef]
- Song, J.J. Virtual Reality for Vestibular Rehabilitation. Clin. Exp. Otorhinolaryngol. 2019, 12, 329–330. [Google Scholar] [CrossRef] [PubMed]
- Ashiri, M.; Lithgow, B.; Suleiman, A.; Blakley, B.; Mansouri, B.; Moussavi, Z. Differences Between Physical vs. Virtual Evoked Vestibular Responses. Ann. Biomed. Eng. 2020, 48, 1241–1255. [Google Scholar] [CrossRef]
- Ashiri, M.; Lithgow, B.; Mansouri, B.; Moussavi, Z. Comparison between vestibular responses to a physical and virtual reality rotating chair. In Proceedings of the 11th Augmented Human International Conference, Winnipeg, MB, Canada, 27–29 May 2020; Volume 16, pp. 1–4. [Google Scholar]
- Keshavarz, B.; Riecke, B.E.; Hettinger, L.J.; Campos, J.L. Vection and visually induced motion sickness: How are they related? Front. Psychol. 2015, 6, 472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmisano, S.; Allison, R.S.; Schira, M.M.; Barry, R.J. Future challenges for vection research: Definitions, functional significance, measures, and neural bases. Front. Psychol. 2015, 6, 193. [Google Scholar] [CrossRef] [Green Version]
- Ashiri, M.; Lithgow, B.; Suleiman, A.; Mansouri, B.; Moussavi, Z. Quantitative measures of the visually evoked sensation of body movement in space (Vection) using Electrovestibulography (EVestG). Virtual Real. 2020. [Google Scholar] [CrossRef]
- Hettinger, L.J.; Berbaum, K.S.; Kennedy, R.S.; Dunlap, W.P.; Nolan, M.D. Vection and simulator sickness. Mil. Psychol. 1990, 2, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Smart, L.J., Jr.; Stoffregen, T.A.; Bardy, B.G. Visually induced motion sickness predicted by postural instability. Hum. Factors 2002, 44, 451–465. [Google Scholar] [CrossRef]
- Dieterich, M.; Bense, S.; Stephan, T.; Yousry, T.A.; Brandt, T. fMRI signal increases and decreases in cortical areas during small-field optokinetic stimulation and central fixation. Exp. Brain Res. 2003, 148, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Viirre, E. Vestibular telemedicine and rehabilitation. Applications for virtual reality. Stud. Health Technol. Inform. 1996, 29, 299–305. [Google Scholar]
- Kramer, P.D.; Roberts, D.C.; Shelhamer, M.; Zee, D.S. A versatile stereoscopic visual display system for vestibular and oculomotor research. J. Vestib. Res. 1998, 8, 363–379. [Google Scholar] [CrossRef]
- Micarelli, A.; Viziano, A.; Micarelli, B.; Augimeri, I.; Alessandrini, M. Vestibular rehabilitation in older adults with and without mild cognitive impairment: Effects of virtual reality using a head-mounted display. Arch. Gerontol. Geriatr. 2019, 83, 246–256. [Google Scholar] [CrossRef]
- Park, J.H.; Jeon, H.J.; Lim, E.C.; Koo, J.W.; Lee, H.J.; Kim, H.J.; Lee, J.S.; Song, C.G.; Hong, S.K. Feasibility of Eye Tracking Assisted Vestibular Rehabilitation Strategy Using Immersive Virtual Reality. Clin. Exp. Otorhinolaryngol. 2019, 12, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Gottshall, K.R.; Sessoms, P.H.; Bartlett, J.L. Vestibular physical therapy intervention: Utilizing a computer assisted rehabilitation environment in lieu of traditional physical therapy. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2012, 2012, 6141–6144. [Google Scholar]
- Hondebrink, M.S.; Mert, A.; van der Lint, R.; de Ru, J.A.; van der Wurff, P. Motion-based equilibrium reprocessing therapy a novel treatment method for chronic peripheral vestibulopathies: A pilot study. Medicine 2017, 96, e7128. [Google Scholar] [CrossRef]
- Viirre, E.; Sitarz, R. Vestibular rehabilitation using visual displays: Preliminary study. Laryngoscope 2002, 112, 500–503. [Google Scholar] [CrossRef] [PubMed]
- Rosiak, O.; Krajewski, K.; Woszczak, M.; Jozefowicz-Korczynska, M. Evaluation of the effectiveness of a Virtual Reality-based exercise program for Unilateral Peripheral Vestibular Deficit. J. Vestib. Res. 2018, 28, 409–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sparrer, I.; Duong Dinh, T.A.; Ilgner, J.; Westhofen, M. Vestibular rehabilitation using the Nintendo® Wii Balance Board—A user-friendly alternative for central nervous compensation. Acta Otolaryngol. 2013, 133, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Yeh, S.C.; Chen, S.; Wang, P.C.; Su, M.C.; Chang, C.H.; Tsai, P.Y. Interactive 3-dimensional virtual reality rehabilitation for patients with chronic imbalance and vestibular dysfunction. Technol. Health Care 2014, 22, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.Y.; Fang, T.Y.; Yeh, S.C.; Su, M.C.; Wang, P.C.; Wang, V.Y. Three-dimensional, virtual reality vestibular rehabilitation for chronic imbalance problem caused by Ménière’s disease: A pilot study. Disabil. Rehabil. 2017, 39, 1601–1606. [Google Scholar] [CrossRef] [PubMed]
- Garcia, A.P.; Ganança, M.M.; Cusin, F.S.; Tomaz, A.; Ganança, F.F.; Caovilla, H.H. Vestibular rehabilitation with virtual reality in Ménière’s disease. Braz. J. Otorhinolaryngol. 2013, 79, 366–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viziano, A.; Micarelli, A.; Augimeri, I.; Micarelli, D.; Alessandrini, M. Long-term effects of vestibular rehabilitation and head-mounted gaming task procedure in unilateral vestibular hypofunction: A 12-month follow-up of a randomized controlled trial. Clin. Rehabil. 2019, 33, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Micarelli, A.; Viziano, A.; Augimeri, I.; Micarelli, D.; Alessandrini, M. Three-dimensional head-mounted gaming task procedure maximizes effects of vestibular rehabilitation in unilateral vestibular hypofunction: A randomized controlled pilot trial. Int. J. Rehabil. Res. 2017, 40, 325–332. [Google Scholar] [CrossRef]
- Bergeron, M.; Lortie, C.L.; Guitton, M.J. Use of Virtual Reality Tools for Vestibular Disorders Rehabilitation: A Comprehensive Analysis. Adv. Med. 2015, 2015, 916735. [Google Scholar] [CrossRef] [Green Version]
- Suleiman, A.; Lithgow, B.J.; Anssari, N.; Ashiri, M.; Moussavi, Z.; Mansouri, B. Correlation between Ocular and Vestibular Abnormalities and Convergence Insufficiency in Post-Concussion Syndrome. Neuroophthalmology 2020, 44, 157–167. [Google Scholar] [CrossRef]
- Xie, M.; Zhou, K.; Patro, N.; Chan, T.; Levin, M.; Gupta, M.K.; Archibald, J. Virtual Reality for Vestibular Rehabilitation: A Systematic Review. Otol. Neurotol. 2021. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, M.; Murofushi, T. Vestibular rehabilitation to bilateral vestibulopathy. Equilib. Res. 2021, in press. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsumura, M.; Murofushi, T. Vestibular Rehabilitation after Vestibulopathy Focusing on the Application of Virtual Reality. J. Otorhinolaryngol. Hear. Balance Med. 2021, 2, 5. https://doi.org/10.3390/ohbm2020005
Matsumura M, Murofushi T. Vestibular Rehabilitation after Vestibulopathy Focusing on the Application of Virtual Reality. Journal of Otorhinolaryngology, Hearing and Balance Medicine. 2021; 2(2):5. https://doi.org/10.3390/ohbm2020005
Chicago/Turabian StyleMatsumura, Masashi, and Toshihisa Murofushi. 2021. "Vestibular Rehabilitation after Vestibulopathy Focusing on the Application of Virtual Reality" Journal of Otorhinolaryngology, Hearing and Balance Medicine 2, no. 2: 5. https://doi.org/10.3390/ohbm2020005