Thermal Curing of Adhesive Joints Enabled by Precision Heating Multi-Material Additive Manufacturing
Abstract
:1. Introduction
1.1. Multi-Material Additive Manufacturing
1.2. Curing of Thermosetting Adhesives
1.3. Adhesive Tailoring for Single-Lap Joints Improves Stress Distribution
1.4. Multi-Material Additively Manufactured Embedded Circuits
1.5. Proposed Method
2. Materials and Methods
2.1. Materials
2.2. Adherend Design
2.3. Thermal Modeling and Characterization of Adherends with Embedded Resistance
- h = the convective heat transfer coefficient [W/m2K];
- Ase = the exposed heat exchange surface of the specimen [m2];
- Tmax = the specimen temperature to be reached [K];
- T∞ = the surrounding ambient temperature [K];
- ε = the emissivity of the wire;
- σ = 5.67 × 10-8, which is the Stefan-Boltzmann constant [W/m2K4].
- β = the thermal expansion coefficient at constant pressure [1/K];
- g = the gravitational acceleration [m/s2];
- Pr = the Prandtl number;
- ν = the cinematic viscosity [m2/s].
- Ltot = the total length [m];
- ρ = the resistivity of the conductive wire [Ω cm];
- s = the cross-sectional area of the wire [mm2].
2.4. Single-Lap Joint Manufacturing and Testing
3. Results and Discussion
- Configuration indicates the type of specimen.
- CuringTemperature represents the curing temperature.
- RepetitionNumber identifies the specimen number with that specific configuration.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- da Silva, L.F.M.; Öchsner, A.; Adams, R.D. Handbook of Adhesion Technology; Springer International Publishing: Cham, Germany, 2018. [Google Scholar]
- Petrie, E.M. Handbook of Adhesives and Sealants; McGraw-Hill: New York, NY, USA, 1996. [Google Scholar]
- Wei, Y.; Jin, X.; Luo, Q.; Li, Q.; Sun, G. Adhesively bonded joints—A review on design, manufacturing, experiments, modeling and challenges. Compos. Part B Eng. 2024, 276, 111225. [Google Scholar] [CrossRef]
- Tong, L.; Luo, Q. Analytical Approach to Joint Design. In Handbook of Adhesion Technology; Da Silva, L.F.M., Öchsner, A., Adams, R.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 597–627. [Google Scholar]
- Frascio, M.; Morchio, S.; Musiari, F.; Usman, K.M.; Dittamo, F.; Minuto, M.; Avalle, M. Investigating Multi-Material Additive Manufacturing for Disassembly and Reparability of Adhesive Joints by Precision Heating. Adhesives 2025, 1, 4. [Google Scholar] [CrossRef]
- Kwok, S.W.; Goh, K.H.H.; Tan, Z.D.; Tan, S.T.M.; Tjiu, W.W.; Soh, J.Y.; Ng, Z.J.G.; Chan, Y.Z.; Hui, H.K.; Goh, K.E.J. Electrically conductive filament for 3D-printed circuits and sensors. Appl. Mater. Today 2017, 9, 167–175. [Google Scholar] [CrossRef]
- Saurabh, A.; Seung, Y.K. Revolutionizing 3D electronics: Single-step femtosecond laser fabrication of conductive embedded structures and circuitry. Mater. Today Adv. 2025, 25, 100544. [Google Scholar] [CrossRef]
- Jangid, A.R.; Strong, E.B.; Chuang, J.; Martinez, A.W.; Martinez, N.W. Evaluation of commercially-available conductive filaments for 3D printing flexible circuits on paper. PeerJ Mater. Sci. 2022, 4, e21. [Google Scholar] [CrossRef]
- Niese, B.; Stichel, T.; Amend, P.; Urmoneit, U.; Roth, S.; Schmidt, M. Manufacturing of conductive circuits for embedding stereolithography by means of conductive adhesive and laser sintering. Phys. Procedia 2014, 56, 336–344. [Google Scholar] [CrossRef]
- Turner, B.N.; Strong, R.; Gold, S.A. A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp. J. 2014, 20, 192–204. [Google Scholar] [CrossRef]
- Ravoori, D.; Alba, L.; Prajapati, H.; Jain, A. Investigation of process-structure-property relationships in polymer extrusion based additive manufacturing through in situ high speed imaging and thermal conductivity measurements. Addit. Manuf. 2018, 23, 132–139. [Google Scholar] [CrossRef]
- Turner, B.N.; Gold, S.A. A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyp. J. 2015, 21, 250–261. [Google Scholar] [CrossRef]
- Li, L.; Sun, Q.; Bellehumeur, C.; Gu, P. Composite modeling and analysis for fabrication of FDM prototypes with locally controlled properties. J. Manuf. Process. 2002, 4, 129–141. [Google Scholar] [CrossRef]
- Gajdos, I.; Slota, J. Influence of printing conditions on structure in FDM prototypes. Teh. Vjesn.-Tech. Gaz. 2013, 20, 231–236. [Google Scholar]
- Singh, R.; Singh, G.; Singh, J.; Kumar, R. On printability of PLA-PEKK-HAp-CS based functional prototypes with FDM: Thermo-mechanical investigations. Mater. Res. Express 2019, 6, 115338. [Google Scholar] [CrossRef]
- Lin, E.; Li, Y.; Ortiz, C.; Boyce, M.C. 3D printed, bio-inspired prototypes and analytical models for structured suture interfaces with geometrically-tuned deformation and failure behavior. J. Mech. Phys. Solids. 2014, 73, 166–182. [Google Scholar] [CrossRef]
- Suresh, G.; Narayana, K.L. A review on fabricating procedures in rapid prototyping. 3D Printing: Breakthroughs in Research and Practice. Inf. Resour. Manag. Assoc. 2016, 1, 1–21. [Google Scholar] [CrossRef]
- Tello, J.A.; Zapata, M.; Paillacho, D. Advances in Additive Manufacturing, Modeling Systems and 3D Prototyping. In Proceedings of the AHFE 2019 International Conference on Additive Manufacturing, Modeling Systems and 3D Prototyping, Washington, DC, USA, 24–28 July 2019; Springer: Berlin/Heidelberg, Germany, 2020; Volume 975, pp. 108–118. [Google Scholar] [CrossRef]
- Haryńska, A.; Carayon, I.; Kosmela, P.; Szeliski, K.; Łapiński, M.; Pokrywczyńska, M.; Kucińska-Lipka, J.; Janik, H. A comprehensive evaluation of flexible FDM/FFF 3D printing filament as a potential material in medical application. Eur. Polym. J. 2020, 138, 109958. [Google Scholar] [CrossRef]
- Knoop, F.; Schoeppner, V. Mechanical and Thermal Properties of Fdm Parts Manufactured. In Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA, 10–12 August 2015. [Google Scholar]
- Dawoud, M.; Taha, I.; Ebeid, S.J. Mechanical behaviour of ABS: An experimental study using FDM and injection moulding techniques. J. Manuf. Process. 2016, 21, 39–45. [Google Scholar] [CrossRef]
- Kiendl, J.; Gao, C. Controlling toughness and strength of FDM 3D-printed PLA components through the raster layup. Compos. Part B Eng. 2020, 180, 107562. [Google Scholar] [CrossRef]
- Yadav, D.; Chhabra, D.; Garg, R.K.; Ahlawat, A.; Phogat, A. Optimization of FDM 3D printing process parameters for multi-material using artificial neural network. Mater. Today Proc. 2020, 21, 1583–1591. [Google Scholar] [CrossRef]
- Schumacher, C.; Schöppner, V.; Fels, C. A method to evaluate the process-specific warpage for different polymers in the FDM process. AIP Conf. Proc. 2019, 2065. [Google Scholar] [CrossRef]
- Leicht, H.; Orf, L.; Hesselbach, J.; Vudugula, H.; Kraus, E.; Baudrit, B.; Hochrein, T.; Bastian, M. A bonding of 3D-printed plastic components. J. Adhes. 2020, 96, 48–63. [Google Scholar] [CrossRef]
- Kumar, S.; Wardle, B.L.; Arif, M.F.; Ubaid, J. Stress Reduction of 3D Printed Compliance-Tailored Multilayers. Adv. Eng. Mater. 2018, 20, 1700883. [Google Scholar] [CrossRef]
- Khan, M.A.; Kumar, S.; Cantwell, W.J. Additively manufactured cylindrical systems with stiffness-tailored interface: Modeling and experiments. Int. J. Solids Struct. 2018, 152–153, 71–84. [Google Scholar] [CrossRef]
- Liu, T.; Liu, L.; Zeng, C.; Liu, Y.; Leng, J. 4D printed anisotropic structures with tailored mechanical behaviors and shape memory effects. Compos. Sci. Technol. 2020, 186, 107935. [Google Scholar] [CrossRef]
- Khan, M.A.; Kumar, S. Interfacial stresses in single-side composite patch-repairs with material tailored bondline. Mech. Adv. Mater. Struct. 2016, 25, 304–318. [Google Scholar] [CrossRef]
- Parthasarathy, J.; Starly, B.; Raman, S. A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications. J. Manuf. Process. 2011, 13, 160–170. [Google Scholar] [CrossRef]
- Sekiguchi, Y.; Nakanouchi, M.; Haraga, K.; Takasaki, I.; Sato, C. Experimental investigation on strength of stepwise tailored single lap adhesive joint using second-generation acrylic adhesive via shear and low-cycle shear tests. Int. J. Adhes. Adhes. 2019, 95, 102438. [Google Scholar] [CrossRef]
- Vaezi, M.; Chianrabutra, S.; Mellor, B.; Yang, S. Multiple material additive manufacturing—Part 1: A review: This review paper covers a decade of research on multiple material additive manufacturing technologies which can produce complex geometry parts with different materials. Virtual Phys. Prototyp. 2013, 8, 19–50. [Google Scholar] [CrossRef]
- Bohidar, S.K.; Sharma, R.; Mishra, P.R. Functionally Graded Materials: A Critical Review. Int. J. Res. 2014, 1, 289–301. [Google Scholar]
- Alfaify, A.; Saleh, M.; Abdullah, F.M.; Al-Ahmari, A.M. Design for Additive Manufacturing: A Systematic Review. Sustainability 2020, 12, 7936. [Google Scholar] [CrossRef]
- Pethrick, R.A. Design and ageing of adhesives for structural adhesive bonding—A review. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2015, 229, 349–379. [Google Scholar] [CrossRef]
- Engels, T. Thermoset adhesives: Epoxy resins, acrylates and polyurethanes. In Thermosets; Elsevier: Amsterdam, The Nederlands, 2012; pp. 228–253. [Google Scholar]
- Banea, M.D. Debonding on Demand of Adhesively Bonded Joints: A Critical Review. Rev. Adhes. Adhes. 2019, 7, 33–50. [Google Scholar] [CrossRef]
- Jahani, Y.; Baena, M.; Barris, C.; Perera, R.; Torres, L. Influence of curing, post-curing and testing temperatures on mechanical properties of a structural adhesive. Constr. Build. Mater. 2022, 324, 126698. [Google Scholar] [CrossRef]
- Carbas, R.; Silva Lda Critchlow, G. Effect of post-cure on adhesively bonded functionally graded joints by induction heating. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2015, 229, 419–430. [Google Scholar] [CrossRef]
- dos Reis, M.Q.; Marques, E.A.S.; Carbas, R.J.C.; da Silva, L.F.M. Functionally graded adherends in adhesive joints: An overview. J. Adv. Join. Process. 2020, 2, 100033. [Google Scholar] [CrossRef]
- Carbas, R.J.C.; Da Silva, L.F.M.; Critchlow, G.W. Adhesively bonded functionally graded joints by induction heating. Int. J. Adhes. Adhes. 2014, 48, 110–118. [Google Scholar] [CrossRef]
- Carbas, R.J.C.; Marques, E.A.S.; da Silva, L.F.M.; Lopes, A.M. Effect of Cure Temperature on the Glass Transition Temperature and Mechanical Properties of Epoxy Adhesives. J. Adhes. 2014, 90, 104–119. [Google Scholar] [CrossRef]
- Banea, M.D.; da Silva, L.F.M.; Carbas, R.J.C.; de Barros, S. Debonding on command of multi-material adhesive joints. J. Adhes. 2016, 93, 756–770. [Google Scholar] [CrossRef]
- da Silva, L.F.M.; Adams, R.D. Joint strength predictions for adhesive joints to be used over a wide temperature range. Int. J. Adhes. Adhes. 2007, 27, 362–379. [Google Scholar] [CrossRef]
- Dong, W.; Gu, X.; Han, J.; You, L. Universal Adhesives- Different Curing Methods and Applications. E3S Web Conf. 2021, 290, 01021. [Google Scholar] [CrossRef]
- Cavalcanti, D.K.K.; Medina, M.; de Queiroz, H.F.M.; Neto, J.d.S.e.S.; Chaves, F.J.P.; Banea, M.D. Recent Advances in Adhesive Bonding of 3D-Printed Parts and Methods to Increase their Mechanical Performance. Ann. Dunarea De Jos Univ. Galati Fascicle XII Weld. Equip. Technol. 2023, 34, 17–24. [Google Scholar] [CrossRef]
- Barbosa, N.G.C.; Campilho, R.D.S.G.; Silva, F.J.G.; Moreira, R.D.F. Comparison of different adhesively-bonded joint types for mechanical structures. Appl. Adhes. Sci. 2018, 6, 15. [Google Scholar] [CrossRef]
- da Silva, L.F.M.; Öchsner, A.; Adams, R.D. Introduction to Adhesive Bonding Technology. In Handbook of Adhesion Technology; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–7. [Google Scholar]
- Abbasi, M.; Ciardiello, R.; Goglio, L. Experimental Study on the Effect of Bonding Area Dimensions on the Mechanical Behavior of Composite Single-Lap Joint with Epoxy and Polyurethane Adhesives. Appl. Sci. 2023, 13, 7683. [Google Scholar] [CrossRef]
- Abbasi, M.; Ciardiello, R.; Goglio, L. Effect of bonding area geometry on the behavior of composite single lap joints (SLJ) and estimation of adhesive properties using finite element method. J. Adhes. 2024, 100, 686–708. [Google Scholar] [CrossRef]
- Borges, C.S.P.; Akhavan-Safar, A.; Tsokanas, P.; Carbas, R.J.C.; Marques, E.A.S.; da Silva, L.F.M. From fundamental concepts to recent developments in the adhesive bonding technology: A general view. Discov. Mech. Eng. 2023, 2, 8. [Google Scholar] [CrossRef]
- Nakanouchi, M.; Sato, C.; Sekiguchi, Y.; Haraga, K.; Uno, H. Development of application method for fabricating functionally graded adhesive joints by two-component acrylic adhesives with different elastic moduli. J. Adhes. 2019, 95, 529–542. [Google Scholar] [CrossRef]
- Frascio, M.; Marques, E.A.d.S.; Carbas, R.J.C.; da Silva, L.F.M.; Monti, M.; Avalle, M. Review of Tailoring Methods for Joints with Additively Manufactured Adherends and Adhesives. Materials 2020, 13, 3949. [Google Scholar] [CrossRef]
- Frascio, M.; Moroni, F.; Marques, E.; Carbas, R.; Reis, M.; Monti, M.; Avalle, M.; da Silva, L. Feasibility study on hybrid weld-bonded joints using additive manufacturing and conductive thermoplastic filament. J. Adv. Join. Process. 2021, 3, 100046. [Google Scholar] [CrossRef]
- Frascio, M.; Moroni, F.; Marques, E.; Carbas, R.; Reis, M.; Monti, M.; Avalle, M.; da Silva, L. Adhesive bonding of glass-fibre thermoplastic composite: Process optimisation and sustainability analysis using LCA methodology. Int. J. Adv. Manuf. Technol. 2024, 130, 5709–5726. [Google Scholar] [CrossRef]
- Senatov, F.S.; Niaza, K.V.; Stepashkin, A.A.; Kaloshkin, S.D. Low-cycle fatigue behavior of 3d-printed PLA-based porous scaffolds. Compos. Part B Eng. 2016, 97, 193–200. [Google Scholar] [CrossRef]
- Batista, M.; Valerga, A.P.; Salguero, J.; Vidal, S.R.F. State of the art of the fused deposition modeling using PLA: Improving the performance. In Additive and Subtractive Manufacturing; De Gruyter: Berlin, Germany, 2019. [Google Scholar]
- Flowers, P.F.; Reyes, C.; Ye, S.; Kim, M.J.; Wiley, B.J. 3D printing electronic components and circuits with conductive thermoplastic filament. Addit. Manuf. 2017, 18, 156–163. [Google Scholar] [CrossRef]
- Abbasi, M.; Ciardiello, R.; Goglio, L. A novel approach for damage assessment in adhesively bonded composite joints using backface strain technique. Compos. Part B Eng. 2024, 286, 111766. [Google Scholar] [CrossRef]
- Abbasi, M.; Ciardiello, R.; Goglio, L. Backface strain as an index to detect damage initiation in composite single-lap bonded joints: Effects of adhesive type and joint dimensions. Int. J. Adhes. Adhes. 2024, 134, 103791. [Google Scholar] [CrossRef]
- Pizzorni, M.; Benvenuto, M.; Lertora, E.; Mandolfino, C. Adhesive bonding of CFRP with a 3D-printed short-fiber composite: An experimental study on the effects of geometry and adhesive system on joint performance. Compos. Part B Eng. 2025, 294, 112155. [Google Scholar] [CrossRef]
- Frascio, M.; Mandolfino, C.; Moroni, F.; Jilich, M.; Lagazzo, A.; Pizzorni, M.; Bergonzi, L.; Morano, C.; Alfano, M.; Avalle, M. Appraisal of surface preparation in adhesive bonding of additive manufactured substrates. Int. J. Adhes. Adhes. 2021, 106, 102802. [Google Scholar] [CrossRef]
- Jilich, M.; Frascio, M.; Avalle, M.; Zoppi, M. Development of a gripper for garment handling designed for additive manufacturing. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 235, 1799–1810. [Google Scholar] [CrossRef]
- Vijayan, V.; Kumar, S.A.; Gautham, S.; Masthan, M.M.; Piraichudan, N. Design and analysis of prosthetic foot using additive manufacturing technique. Mater. Today. Proc. 2021, 37, 1665–1671. [Google Scholar] [CrossRef]
- Kathrotiya, D.; Yusuf, A.; Bhagchandani, R.K.; Gupta, S. A Study for the development of prosthetic foot by additive manufacturing. J. Braz. Soc. Mech. Sci. Eng. 2023, 45, 187. [Google Scholar] [CrossRef]
- Bhatt, S.; Joshi, D.; Rakesh, P.K.; Godiyal, A.K. Advances in additive manufacturing processes and their use for the fabrication of lower limb prosthetic devices. Expert Rev. Med. Devices 2023, 20, 17–27. [Google Scholar] [CrossRef]
- Aryal, M.R.; Pun, S. Additive manufacturing of prosthetic hands: A brief overview. Int. J. Interact. Des. Manuf. (IJIDeM) 2022, 16, 1099–1112. [Google Scholar] [CrossRef]
- Fasel, U.; Keidel, D.; Baumann, L.; Cavolina, G.; Eichenhofer, M.; Ermanni, P. Composite additive manufacturing of morphing aerospace structures. Manuf. Lett. 2020, 23, 85–88. [Google Scholar] [CrossRef]
- Chen, W.; Hu, Z.; Li, X.; He, J.; Wang, S.; Zhao, Y.; Li, M.; Zhang, J. Additive manufacturing of high-strength polyamide 6 composites reinforced with continuous carbon fiber prepreg. Polym. Compos. 2024, 45, 668–679. [Google Scholar] [CrossRef]
- Wang, H.H.; Huo, S.; Chevali, V.; Hall, W.; Offringa, A.; Song, P.; Wang, H. Carbon Fiber Reinforced Thermoplastics: From Materials to Manufacturing and Applications. Adv. Materials. 2025, 1, e2418709. [Google Scholar] [CrossRef]
- Elsayed, R.; Teow, Y.H. Advanced functional polymer materials for biomedical applications. J. Appl. Polym. Sci. 2025, 142, e56391. [Google Scholar] [CrossRef]
- Adil, S.; Lazoglu, I. A review on additive manufacturing of carbon fiber-reinforced polymers: Current methods, materials, mechanical properties, applications and challenges. J. Appl. Polym. Sci. 2023, 140, e53476. [Google Scholar] [CrossRef]
- Karaş, B.; Smith, P.J.; Fairclough, J.P.A.; Mumtaz, K. Additive manufacturing of high density carbon fibre reinforced polymer composites. Addit. Manuf. 2022, 58, 103044. [Google Scholar] [CrossRef]
- Rashvand, K.; Eder, M.A.; Sarhadi, A. In-situ and adhesive repair of continuous fiber composites using 3D printing. Addit. Manuf. 2024, 80, 103975. [Google Scholar] [CrossRef]
- Maqsood, N.; Rimašauskas, M.; Ghobakhloo, M.; Mordas, G.; Skotnicová, K. Additive manufacturing of continuous carbon fiber reinforced polymer composites using materials extrusion process. Mechanical properties, process parameters, fracture analysis, challenges, and future prospect. A review. Adv. Compos. Hybrid. Mater. 2024, 7, 202. [Google Scholar] [CrossRef]
- Stacchiotti, F.; Bregoli, C.; Ferrari, R.; Fiocchi, J.; Morellato, K.; Biffi, C.A.; Frascio, M.; Minuto, M.; Tuissi, A.; Gruppioni, E. A patient-matched prosthesis for thumb amputations: Design, mechanical and functional evaluation. Med. Eng. Phys. 2025, 137, 104296. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frascio, M.; Minuto, M.; Musiari, F.; Morchio, S.; Usman, K.M.; Dittamo, F.; Zoppi, M.; Avalle, M. Thermal Curing of Adhesive Joints Enabled by Precision Heating Multi-Material Additive Manufacturing. J. Manuf. Mater. Process. 2025, 9, 151. https://doi.org/10.3390/jmmp9050151
Frascio M, Minuto M, Musiari F, Morchio S, Usman KM, Dittamo F, Zoppi M, Avalle M. Thermal Curing of Adhesive Joints Enabled by Precision Heating Multi-Material Additive Manufacturing. Journal of Manufacturing and Materials Processing. 2025; 9(5):151. https://doi.org/10.3390/jmmp9050151
Chicago/Turabian StyleFrascio, Mattia, Matilde Minuto, Francesco Musiari, Stefano Morchio, Khalid M. Usman, Federico Dittamo, Matteo Zoppi, and Massimiliano Avalle. 2025. "Thermal Curing of Adhesive Joints Enabled by Precision Heating Multi-Material Additive Manufacturing" Journal of Manufacturing and Materials Processing 9, no. 5: 151. https://doi.org/10.3390/jmmp9050151
APA StyleFrascio, M., Minuto, M., Musiari, F., Morchio, S., Usman, K. M., Dittamo, F., Zoppi, M., & Avalle, M. (2025). Thermal Curing of Adhesive Joints Enabled by Precision Heating Multi-Material Additive Manufacturing. Journal of Manufacturing and Materials Processing, 9(5), 151. https://doi.org/10.3390/jmmp9050151