Hybrid Tool Holder by Laser Powder Bed Fusion of Dissimilar Steels: Towards Eliminating Post-Processing Heat Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Powder and Back-End Tool Holder Material
2.2. Additive Manufacturing
2.3. Microstructure and Mechanical Characterization
2.4. Thermodynamic Simulations
3. Results and Discussion
3.1. Microstructure of MAR 60 in As-Built Condition
3.2. Mechanical Properties of MAR 60 in As-Built Condition
3.3. Hybrid Tool Holder
3.3.1. Cone Geometry Experiments
3.3.2. Hybrid Tool Holder: Interface Characteristics
3.3.3. Hybrid TOOL HOLDER: Hardness
4. Conclusions
- As-built MAR60 maraging steel was characterized by a martensitic microstructure and ~10 vol.% intercellular retained austenite as a result of the heavy micro-segregation of Mo.
- MAR60 showed an as-built hardness of ~440–450 HV10, tensile strength of over 1400 MPa, and CVN impact energy of 40 J, properties that match those of pre-manufactured heat-treated low-alloy tool steels generally used in the manufacturing of tool holders (i.e., 420–440 HV, ~1400 MPa, and 20 J, respectively). This eliminates the need for any post-processing heat treatment of the hybrid tool.
- The high hardness and strength of AB MAR60 were the result of a large dislocation density and matrix supersaturation due to the rapid solidification in L-PBF. Additionally, a high wt.% of Mo in chemistry (i.e., 10%) further induced larger solid solution strengthening compared to other maraging systems.
- It was shown that hardness was dependent on the interlayer deposition time in L-PBF, where short interlayer times led to a softening to ~360 HV1, presumably due to the in situ annealing because of heat accumulation and insufficient cooling.
- The hybrid tool was manufactured by manipulating the interlayer deposition time, keeping it higher than 40 s for all 2D cross-sectional areas of the component. This led to a uniform hardness of ~440–450 HV1.
- The interface of dissimilar steels showed strong metallurgical bonding with no apparent defects in terms of microcracks or unwanted phases. Further, the interface showed slight microstructural and hardness variations with a limited thickness of less than 400 µm thanks to the very localized melting in L-PBF processing.
- The use of steels with tailored chemical compositions to ensure printability (weldability) and acceptable as-built mechanical properties may pave the way to eliminate the post-processing heat treatment step in the manufacture of hybrid tools by AM, especially for the components that are not subjected to elevated temperatures during the service. The use of as-built material at elevated temperatures may not be feasible due to the in situ tempering/aging, resulting in dimensional changes and mechanical properties variations.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bajaj, P.; Hariharan, A.; Kini, A.; Kürnsteiner, P.; Raabe, D.; Jägle, E.A. Steels in additive manufacturing: A review of their microstructure and properties. Mater. Sci. Eng. A 2020, 772, 138633. [Google Scholar] [CrossRef]
- Leal, R.; Barreiros, F.M.; Alves, L.; Romeiro, F.; Vasco, J.C.; Santos, M.; Marto, C. Additive manufacturing tooling for the automotive industry. Int. J. Adv. Manuf. Technol. 2017, 92, 1671–1676. [Google Scholar] [CrossRef]
- Asnafi, N. Application of laser-based powder bed fusion for direct metal tooling. Metals 2021, 11, 458. [Google Scholar] [CrossRef]
- Asnafi, N.; Rajalampi, J.; Aspenberg, D.; Alveflo, A. Production tools made by additive manufacturing through laser-based powder bed fusion. BHM Berg Hüttenmännische Monatshefte 2020, 165, 125–136. [Google Scholar] [CrossRef]
- Sommer, D.; Pape, D.; Esen, C.; Hellmann, R. Tool Wear and Milling Characteristics for Hybrid Additive Manufacturing Combining Laser Powder Bed Fusion and In Situ High-Speed Milling. Materials 2022, 15, 1236. [Google Scholar] [CrossRef] [PubMed]
- Feldhausen, T.; Paramanathan, M.; Heineman, J.; Hassen, A.; Heinrich, L.; Kurfess, R.; Fillingim, K.; Saleeby, K.; Post, B. Hybrid Manufacturing of Conformal Cooling Channels for Tooling. J. Manuf. Mater. Process. 2023, 7, 74. [Google Scholar] [CrossRef]
- Seltzman, A.H.; Wukitch, S.J. Resolution and geometric limitations in laser powder bed fusion additively manufactured GRCop-84 structures for a lower hybrid current drive launcher. Fusion Eng. Des. 2021, 173, 112847. [Google Scholar] [CrossRef]
- López-García, C.; García-López, E.; Siller, H.R.; Sandoval-Robles, J.A.; Rodriguez, C.A. A dimensional assessment of small features and lattice structures manufactured by laser powder bed fusion. Prog. Addit. Manuf. 2022, 7, 751–763. [Google Scholar] [CrossRef]
- Fathizadan, S.; Ju, F.; Lu, Y. Deep representation learning for process variation management in laser powder bed fusion. Addit. Manuf. 2021, 42, 101961. [Google Scholar] [CrossRef]
- Dardaei Joghan, H.; Hölker-Jäger, R.; Komodromos, A.; Tekkaya, A.E. Hybrid Additive Manufacturing of Forming Tools. Automot. Innov. 2023, 6, 311–323. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.; Stucker, B.; Khorasani, M. Hybrid Additive Manufacturing. In Additive Manufacturing Technologies; Gibson, I., Rosen, D., Stucker, B., Khorasani, M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 347–366. ISBN 978-3-030-56127-7. [Google Scholar]
- Hölker-Jäger, R.; Tekkaya, A.E. Additive manufacture of tools and dies for metal forming. In Laser Additive Manufacturing; Brandt, M., Ed.; Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing: Cambridge, UK, 2017; pp. 439–464. ISBN 978-0-08-100433-3. [Google Scholar]
- Azizi, H.; Ghiaasiaan, R.; Prager, R.; Ghoncheh, M.H.; Samk, K.A.; Lausic, A.; Byleveld, W.; Phillion, A.B. Metallurgical and mechanical assessment of hybrid additively-manufactured maraging tool steels via selective laser melting. Addit. Manuf. 2019, 27, 389–397. [Google Scholar] [CrossRef]
- Khanafi-Benghalem, N.; Felder, E.; Loucif, K.; Montmitonnet, P. Plastic deformation of 25CrMo4 steel during wear: Effect of the temperature, the normal force, the sliding velocity and the structural state. Wear 2010, 268, 23–40. [Google Scholar] [CrossRef]
- Östlund, C. Redevelopment of an Insert Holder for Additive Manufacturing. 2011. Available online: https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-44885 (accessed on 5 January 2025).
- Röttger, A.; Boes, J.; Großwendt, F.; Weber, S. Description of a new concept for the development of adapted hot-work tool steels for laser-powder bed fusion. Addit. Manuf. 2023, 61, 103292. [Google Scholar] [CrossRef]
- Krell, J.; Röttger, A.; Geenen, K.; Theisen, W. General investigations on processing tool steel X40CrMoV5-1 with selective laser melting. J. Mater. Process. Technol. 2018, 255, 679–688. [Google Scholar] [CrossRef]
- Mesquita, R.A. (Ed.) Tool Steels: Properties and Performance; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-315-18151-6. [Google Scholar]
- Jung, M.; Lee, S.-J.; Lee, Y.-K. Microstructural and Dilatational Changes during Tempering and Tempering Kinetics in Martensitic Medium-Carbon Steel. Met. Mater. Trans. A 2009, 40, 551–559. [Google Scholar] [CrossRef]
- Pierer, R.; Schneider, R.; Hiebler, H. The Behaviour of Two New Tool Steels Regarding Dimensional Change. In Proceedings of the 6th International Tooling Conference, Karlstad, Sweden, 10–13 September 2002. [Google Scholar]
- Deirmina, F.; Pellizzari, M.; AlMangour, B.; Grzesiak, D. Dilatometry Study of the Heat Treatment of a Hot Work Tool Steel Fabricated by Additive Manufacturing. 2019. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101979770&partnerID=40&md5=c9bef6edfd1cb40ba8350c38cb804441 (accessed on 7 January 2025).
- Rohrbach, K.; Schmidt, M. Maraging Steels. In Properties and Selection: Irons, Steels, and High-Performance Alloys; ASM International: Almere, The Netherlands, 1990; pp. 793–800. [Google Scholar] [CrossRef]
- Floreen, S. The physical metallurgy of maraging steels. Met. Rev. 1968, 13, 115–128. [Google Scholar] [CrossRef]
- Laleh, M.; Sadeghi, E.; Revilla, R.I.; Chao, Q.; Haghdadi, N.; Hughes, A.E.; Xu, W.; De Graeve, I.; Qian, M.; Gibson, I.; et al. Heat treatment for metal additive manufacturing. Prog. Mater. Sci. 2023, 133, 101051. [Google Scholar] [CrossRef]
- Deirmina, F.; Amirabdollahian, S.; Harris, L.; Bettini, E.; Siriki, R.; Pellizzari, M.; Bosetti, P.; Molinari, A. Laser-Directed Energy Deposition of Dissimilar Maraging Steels with a Defect-Free Interface: Design for Improved Surface Hardness and Fracture Toughness. Met. Mater. Int. 2023, 29, 2940–2954. [Google Scholar] [CrossRef]
- Hall, A.M. The Metallurgy, Behavior, and Application of the 18-Percent Nickel Maraging Steels a Survey; Technology Utilization Division, Office of Technology Utilization, National Aeronautics and Space Admin: Washington, DC, USA, 1968.
- Wang, W.; Yan, W.; Duan, Q.; Shan, Y.; Zhang, Z.; Yang, K. Study on fatigue property of a new 2.8 GPa grade maraging steel. Mater. Sci. Eng. A 2010, 527, 3057–3063. [Google Scholar] [CrossRef]
- Patil, V.V.; Mohanty, C.P.; Prashanth, K.G. Selective laser melting of a novel 13Ni400 maraging steel: Material characterization and process optimization. J. Mater. Res. Technol. 2023, 27, 3979–3995. [Google Scholar] [CrossRef]
- da Fonseca, D.P.M.; Altoé, M.V.P.; Archanjo, B.S.; Annese, E.; Padilha, A.F. Influence of Mo Content on the Precipitation Behavior of 13Ni Maraging Ultra-High Strength Steels. Metals 2023, 13, 1929. [Google Scholar] [CrossRef]
- Deirmina, F.; Kearns, M.; Davies, P.A.; Harris, L.; Matilainen, V.P.; Lövquist, S. Heat Treatment and Properties of An Ultra-high Strength Maraging Steel Fabricated by Additive Manufacturing. 2020. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85125044795&partnerID=40&md5=922054d9c059ac05ec434a93c69de0c8 (accessed on 7 January 2025).
- Boesch, W.J.; Cowan, T.W.; Special Metals Corp New Hartford NY. Evolution of a Commercial 400 Ksi Grade Maraging Steel. In ASM Congress Detroit; Special Metals Corporation: New Hartford, NY, USA, 1968. [Google Scholar]
- Wendel, M.; Hoffmann, F.; Datchary, W. Bearing steels for induction hardening—Part I. HTM J. Heat Treat. Mater. 2016, 71, 20–34. [Google Scholar] [CrossRef]
- Kurzynowski, T.; Stopyra, W.; Gruber, K.; Ziółkowski, G.; Kuźnicka, B.; Chlebus, E. Effect of Scanning and Support Strategies on Relative Density of SLM-ed H13 Steel in Relation to Specimen Size. Materials 2019, 12, 239. [Google Scholar] [CrossRef] [PubMed]
- Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials, (n.d.). Available online: https://www.astm.org/e0092-17.html (accessed on 7 February 2025).
- Standard Test Methods for Tension Testing of Metallic Materials, (n.d.). Available online: https://www.astm.org/e0008_e0008m-22.html (accessed on 7 February 2025).
- Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, (n.d.). Available online: https://www.astm.org/e0023-18.html (accessed on 7 February 2025).
- Smith, P.M.; Aziz, M.J. Solute trapping in aluminum alloys. Acta Met. Mater. 1994, 42, 3515–3525. [Google Scholar] [CrossRef]
- Santana, A.; Eres-Castellanos, A.; Poplawsky, J.D.; San-Martin, D.; Jimenez, J.A.; Urones-Garrote, E.; Clarke, A.J.; Capdevila, C.; Caballero, F.G. Solute and phase heterogeneous distribution at different scales and its effect on ageing physical phenomena in a laser powder bed fusion produced maraging steel. Addit. Manuf. 2024, 94, 104494. [Google Scholar] [CrossRef]
- Acharya, R.; Sharon, J.A.; Staroselsky, A. Prediction of microstructure in laser powder bed fusion process. Acta Mater. 2017, 124, 360–371. [Google Scholar] [CrossRef]
- Noh, H.; Han, J.; Ryou, K.; Choi, P.-P. Abnormal martensitic transformation and morphology induced by chemical heterogeneity in additively manufactured maraging steel. Scr. Mater. 2024, 253, 116313. [Google Scholar] [CrossRef]
- Deirmina, F.; Davies, P.A.; Casati, R. Effects of Powder Atomization Route and Post-Processing Thermal Treatments on the Mechanical Properties and Fatigue Resistance of Additively Manufactured 18Ni300 Maraging Steel. Adv. Eng. Mater. 2021, 24, 2101011. [Google Scholar] [CrossRef]
- Simson, T.; Koch, J.; Rosenthal, J.; Kepka, M.; Zetek, M.; Zetková, I.; Wolf, G.; Tomčík, P.; Kulhánek, J. Mechanical Properties of 18Ni-300 maraging steel manufactured by LPBF. Procedia Struct. Integr. 2019, 17, 843–849. [Google Scholar] [CrossRef]
- Kempen, K.; Yasa, E.; Thijs, L.; Kruth, J.-P.; Van Humbeeck, J. Microstructure and mechanical properties of Selective Laser Melted 18Ni-300 steel. Phys. Procedia 2011, 12, 255–263. [Google Scholar] [CrossRef]
- Galindo-Nava, E.; Rainforth, W.; Rivera-Díaz-del-Castillo, P. Predicting microstructure and strength of maraging steels: Elemental optimisation. Acta Mater. 2016, 117, 270–285. [Google Scholar] [CrossRef]
- Roth, H.A.; Davis, C.L.; Thomson, R.C. Modeling solid solution strengthening in nickel alloys. Met. Mater. Trans. A 1997, 28, 1329–1335. [Google Scholar] [CrossRef]
- Leslie, W.C. Iron and its dilute substitutional solid solutions. Met. Trans. 1972, 3, 5–26. [Google Scholar] [CrossRef]
- Amirabdollahian, S.; Deirmina, F.; Harris, L.; Siriki, R.; Pellizzari, M.; Bosetti, P.; Molinari, A. Towards controlling intrinsic heat treatment of maraging steel during laser directed energy deposition. Scr. Mater. 2021, 201, 113973. [Google Scholar] [CrossRef]
- Raabe, D.; Sun, B.; Kwiatkowski Da Silva, A.; Gault, B.; Yen, H.-W.; Sedighiani, K.; Thoudden Sukumar, P.; Souza Filho, I.R.; Katnagallu, S.; Jägle, E.; et al. Current Challenges and Opportunities in Microstructure-Related Properties of Advanced High-Strength Steels. Metall. Mater. Trans. A 2020, 51, 5517–5586. [Google Scholar] [CrossRef]
- Additive Manufacturing with Powder Metallurgy Conference. 2021. (AMPM2021) Advances in Additive Manufacturing with Powder Metallurgy. Available online: https://www.proceedings.com/73372.html (accessed on 6 January 2025).
- Gao, X.; Wei, H.; Zhang, L. Effect of oxide inclusions on MnS precipitates and tensile mechanical property of high-strength low-alloy steel. J. Iron Steel Res. Int. 2024, 31, 1210–1220. [Google Scholar] [CrossRef]
- Yan, J.; Li, T.; Shang, Z.; Guo, H. Three-dimensional characterization of MnS inclusions in steel during rolling process. Mater. Charact. 2019, 158, 109944. [Google Scholar] [CrossRef]
- Liu, N.; Cheng, G.; Zhang, L.; Yang, W.; Ren, Y.; Wang, G.; Liu, X. Composition evolution and deformation of different non-metallic inclusions in a bearing steel during hot rolling. J. Iron Steel Res. Int. 2022, 29, 552–562. [Google Scholar] [CrossRef]
Co | Ni | Mo | Ti | Cr | Mn | Si | Al | C | Fe | O | N | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Nominal | 15.00 | 13.00 | 10.00 | <0.30 | <0.20 | <0.1 | <0.1 | <0.1 | <0.03 | Bal. | <0.05 | <0.04 |
Powder | 14.80 | 13.10 | 9.90 | 0.20 | 0.13 | 0.05 | 0.05 | 0.06 | 0.01 | Bal. | 0.04 | 0.01 |
Sample/Orientation | Yield Strength (MPa) | Tensile Strength (MPa) | E-Modulus (GPa) | Elongation (%) | Area Reduction (%) | Hardness [HV10] | CVN Impact Energy [J] | Ref. |
---|---|---|---|---|---|---|---|---|
MAR 60 vertical | 1301 ± 13 | 1405 ± 6 | 190 ± 6 | 16.9 ± 0.2 | 63 ± 3 | 442 ± 6 | 45 ± 1 | This work |
MAR 60 horizontal | 1279 ± 22 | 1423 ± 5 | 204 ± 26 | 16.8 ± 0.2 | 58 ± 1 | 450 ± 10 | 44 ± 2 | This work |
Back-end 25CrMo4 | 1150 | >1350 | - | >6 | - | 430 * | 20 | Supplier |
13Ni400 (hot-rolled) | 1055 | 1258 | - | 19.0 | 70 | 424 * | - | [31] |
13Ni400 (annealed) | 724 | 1145 | - | 19.0 | 72 | 363 * | - | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deirmina, F.; Matilainen, V.-P.; Lövquist, S. Hybrid Tool Holder by Laser Powder Bed Fusion of Dissimilar Steels: Towards Eliminating Post-Processing Heat Treatment. J. Manuf. Mater. Process. 2025, 9, 64. https://doi.org/10.3390/jmmp9020064
Deirmina F, Matilainen V-P, Lövquist S. Hybrid Tool Holder by Laser Powder Bed Fusion of Dissimilar Steels: Towards Eliminating Post-Processing Heat Treatment. Journal of Manufacturing and Materials Processing. 2025; 9(2):64. https://doi.org/10.3390/jmmp9020064
Chicago/Turabian StyleDeirmina, Faraz, Ville-Pekka Matilainen, and Simon Lövquist. 2025. "Hybrid Tool Holder by Laser Powder Bed Fusion of Dissimilar Steels: Towards Eliminating Post-Processing Heat Treatment" Journal of Manufacturing and Materials Processing 9, no. 2: 64. https://doi.org/10.3390/jmmp9020064
APA StyleDeirmina, F., Matilainen, V.-P., & Lövquist, S. (2025). Hybrid Tool Holder by Laser Powder Bed Fusion of Dissimilar Steels: Towards Eliminating Post-Processing Heat Treatment. Journal of Manufacturing and Materials Processing, 9(2), 64. https://doi.org/10.3390/jmmp9020064