Enhancing the Performance of Metal Additive Manufacturing Parts: A Review of Post-Treatment Processes for Extrusion and Sinter-Based Technology
Abstract
1. Introduction
MEX/M: Parts Criticalities
2. Post-Treatment Processes
2.1. Heat Treatments
2.1.1. Aging Treatment
2.1.2. HIP and Other Heat Treatments
2.2. Surface Treatments
2.3. Machining Technologies
2.4. Summary of the Results
3. Outlook and Industrial Applications
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gonzalez-Gutierrez, J.; Cano, S.; Schuschnigg, S.; Kukla, C.; Sapkota, J.; Holzer, C. Additive Manufacturing of Metallic and Ceramic Components by the Material Extrusion of Highly-Filled Polymers: A Review and Future Perspectives. Materials 2018, 11, 840. [Google Scholar] [CrossRef]
- Guerra, M.G.; Morfini, L.; Pellegrini, A.; Meng, F.; Lavecchia, F.; Ferraris, E.; Galantucci, L.M. Material Extrusion-Debinding-Sintering as an Emerging Additive Manufacturing Process Chain for Metal/Ceramic Parts Construction. In CIRP Novel Topics in Production Engineering; Springer: Berlin/Heidelberg, Germany, 2024; Volume 1, pp. 147–182. [Google Scholar] [CrossRef]
- Sun, X.; Mazur, M.; Cheng, C. A Review of Void Reduction Strategies in Material Extrusion-Based Additive Manufacturing. Addit. Manuf. 2023, 67, 103463. [Google Scholar] [CrossRef]
- Lotfizarei, Z.; Mostafapour, A.; Barari, A.; Jalili, A.; Patterson, A.E. Overview of Debinding Methods for Parts Manufactured Using Powder Material Extrusion. Addit. Manuf. 2023, 61, 103335. [Google Scholar] [CrossRef]
- Gonzalez-Gutierrez, J.; Godec, D.; Kukla, C.; Schlauf, T.; Burkhardt, C.; Holzer, C. Shaping, Debinding and Sintering of Steel Components via Fused Filament Fabrication. In Proceedings of the 16th International Scientific Conference on Production Engineering—CIM2017, Zadar, Croatia, 8–10 June 2017; pp. 99–104. [Google Scholar]
- Obadimu, S.O.; Kourousis, K.I. Shrinkage Behaviour of Material Extrusion Steel 316L: Influence of Primary 3D Printing Parameters. Rapid Prototyp. J. 2022, 28, 92–101. [Google Scholar] [CrossRef]
- German, R.M. Sintering Theory and Practice; Wiley: Hoboken, NJ, USA, 1996. [Google Scholar]
- Rios, A.C.; Hryha, E.; Olevsky, E.; Harlin, P.; Cabo, A.; Hryha, E.; Olevsky, E.; Harlin, P. Sintering Anisotropy of Binder Jetted 316L Stainless Steel: Part II—Microstructure Evolution during Sintering. Powder Metall. 2022, 65, 283–295. [Google Scholar] [CrossRef]
- Supriadi, S.; Suharno, B.; Hidayatullah, R.; Maulana, G.; Baek, E. Thermal Debinding Process of SS 17-4 PH in Metal Injection Molding Process with Variation of Heating Rates, Temperatures, and Holding Times. Solid State Phenom. 2017, 266, 238–244. [Google Scholar] [CrossRef]
- Singh, G.; Missiaen, J.M.; Bouvard, D.; Chaix, J.M. Additive Manufacturing of 17-4 PH Steel Using Metal Injection Molding Feedstock: Analysis of 3D Extrusion Printing, Debinding and Sintering. Addit. Manuf. 2021, 47, 102287. [Google Scholar] [CrossRef]
- Singh, G.; Missiaen, J.M.; Bouvard, D.; Chaix, J.M. Copper Extrusion 3D Printing Using Metal Injection Moulding Feedstock: Analysis of Process Parameters for Green Density and Surface Roughness Optimization. Addit. Manuf. 2021, 38, 101778. [Google Scholar] [CrossRef]
- Jansa, J.; Volodarskaja, A.; Hlinka, J.; Zárybnická, L.; Polzer, S.; Kraus, M.; Hajnyš, J.; Schwarz, D.; Pagáč, M. Corrosion and Material Properties of 316L Stainless Steel Produced by Material Extrusion Technology. J. Manuf. Process 2023, 88, 232–245. [Google Scholar] [CrossRef]
- Suwanpreecha, C.; Linjee, S.; Newyawong, P.; Yordsri, V.; Songkuea, S.; Wutikhun, T.; Manonukul, A. Effects of Aging and Shot Peening on Surface Quality and Fatigue Properties of Material Extrusion Additive Manufactured 17-4PH Stainless Steel. Mater. Des. 2024, 241, 112939. [Google Scholar] [CrossRef]
- Kolomy, S.; Maly, M.; Sedlak, J.; Zouhar, J.; Slany, M.; Hrabec, P.; Kouril, K. Machinability of Extruded H13 Tool Steel: Effect of Cutting Parameters on Cutting Forces, Surface Roughness, Microstructure, and Residual Stresses. Alex. Eng. J. 2024, 99, 394–407. [Google Scholar] [CrossRef]
- Ajjarapu, K.P.K.; Barber, C.; Taylor, J.; Pelletiers, T.; Jackson, D.; Beamer, C.; Atre, S.V.; Kate, K.H. Advancements in 3D Printing and Hot Isostatic Pressing of Copper: Bridging the Gap between Green and Sintered States for Enhanced Mechanical and Electrical Properties. Progress. Addit. Manuf. 2024, 9, 2343–2350. [Google Scholar] [CrossRef]
- Momeni, V.; Hufnagl, M.; Shahroodi, Z.; Poehle, G.; Gonzalez-Gutierrez, J.; Schuschnigg, S.; Kukla, C.; Holzer, C. 3D Printing of Aluminum Alloys via Material Extrusion (MEX) Process: Challenges in Developing Acetone-Soluble Binder Systems. Polym. Adv. Technol. 2025, 36, e70194. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, M.; Dai, G.; Liang, Z.; Guo, Y.; Yang, Q.; Sun, Z.; Alexandrov, I.V. Microstructure Evolution and Mechanical Properties of Ti-6Al-4V Alloy Prepared by Fused Filament Fabrication. J. Alloys Compd. 2025, 1014, 178841. [Google Scholar] [CrossRef]
- Thompson, Y.; Zissel, K.; Förner, A.; Gonzalez-Gutierrez, J.; Kukla, C.; Neumeier, S.; Felfer, P. Metal Fused Filament Fabrication of the Nickel-Base Superalloy IN 718. J. Mater. Sci. 2022, 57, 9541–9555. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Beretta, M.; Pellegrini, A.; Selema, A.; Sergeant, P.; Vleugels, J.; Galantucci, L.M.; Ferraris, E. Impact of Strand Deposition and Infill Strategies on the Properties of Monolithic Copper via Material Extrusion Additive Manufacturing. Addit. Manuf. 2024, 89, 104277. [Google Scholar] [CrossRef]
- Côté, R.; Demers, V.; Demarquette, N.R.; Charlon, S.; Soulestin, J. Performance of Different Material Extrusion 3D Printing Strategies in Improving Density and Dimensional Properties. Int. J. Adv. Manuf. Technol. 2025, 140, 4045–4061. [Google Scholar] [CrossRef]
- Go, A.; Jeon, E.S.; Moon, S.K.; Park, S.J. Fabrication of 17-4PH Stainless Steel by Metal Material Extrusion: Effects of Process Parameters and Heat Treatment on Physical Properties. Mater. Des. 2024, 248, 113471. [Google Scholar] [CrossRef]
- Maleki, E.; Bagherifard, S.; Bandini, M.; Guagliano, M. Surface Post-Treatments for Metal Additive Manufacturing: Progress, Challenges, and Opportunities. Addit. Manuf. 2021, 37, 101619. [Google Scholar] [CrossRef]
- Ge, J.; Pillay, S.; Ning, H. Post-Process Treatments for Additive-Manufactured Metallic Structures: A Comprehensive Review. J. Mater. Eng. Perform. 2023, 32, 7073–7122. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Laleh, M.; Sadeghi, E.; Revilla, R.I.; Chao, Q.; Haghdadi, N.; Hughes, A.E.; Xu, W.; De Graeve, I.; Qian, M.; Gibson, I.; et al. Heat Treatment for Metal Additive Manufacturing. Prog. Mater. Sci. 2023, 133, 101051. [Google Scholar] [CrossRef]
- ASTM A564/A564M-19a; Standard Specification for Hot-Rolled and Cold-Finished Age-Hardening Stainless Steel. ASTM International: West Conshohocken, PA, USA, 2013; pp. 1–8. Available online: https://store.astm.org/a0564_a0564m-19a.html (accessed on 27 October 2025).
- Abe, Y.; Kurose, T.; Santos, M.V.A.; Kanaya, Y.; Ishigami, A.; Tanaka, S.; Ito, H. Effect of Layer Directions on Internal Structures and Tensile Properties of 17-4ph Stainless Steel Parts Fabricated by Fused Deposition of Metals. Materials 2021, 14, 243. [Google Scholar] [CrossRef]
- Bouaziz, M.A.; Djouda, J.M.; Chemkhi, M.; Rambaudon, M.; Kauffmann, J.; Hild, F. Heat Treatment Effect on 17-4PH Stainless Steel Manufactured by Atomic Diffusion Additive Manufacturing (ADAM). Procedia CIRP 2021, 104, 935–938. [Google Scholar] [CrossRef]
- Akessa, A.D.; Tucho, W.M.; Lemu, H.G.; Grønsund, J. Investigations of the Microstructure and Mechanical Properties of 17-4 PH Ss Printed Using a MarkForged Metal X. Materials 2022, 15, 6898. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, A.; Lavecchia, F.; Guerra, M.G.; Galantucci, L.M. Influence of Aging Treatments on 17-4 PH Stainless Steel Parts Realized Using Material Extrusion Additive Manufacturing Technologies. Int. J. Adv. Manuf. Technol. 2023, 126, 163–178. [Google Scholar] [CrossRef]
- Liew, Y.H.; Tan, A.; Salehi, M. Microstructural, Mechanical, and Electrochemical Corrosion Properties of Extrusion Additive Manufactured 17-4 Precipitation Hardenable Stainless Steel. J. Mater. Eng. Perform. 2024, 34, 18024–18038. [Google Scholar] [CrossRef]
- Hsiao, C.N.; Chiou, C.S.; Yang, J.R. Aging Reactions in a 17-4 PH Stainless Steel. Mater. Chem. Phys. 2002, 74, 134–142. [Google Scholar] [CrossRef]
- Viswanathan, U.K.; Banerjee, S.; Krishnan, R. Effects of Aging on the Microstructure of 17-4 PH Stainless Steel. Mater. Sci. Eng. 1988, 104, 181–189. [Google Scholar] [CrossRef]
- Forcellese, P.; Mancia, T.; Simoncini, M.; Bellezze, T. Characterization of Microstructure and Localized Corrosion Resistance of Heat-Treated 17-4 PH Stainless Steel Fabricated by Material Extrusion. Metals 2025, 15, 137. [Google Scholar] [CrossRef]
- Cho, Y.H.; Park, S.Y.; Kim, J.Y.; Lee, K.A. 17-4PH Stainless Steel with Excellent Strength–Elongation Combination Developed via Material Extrusion Additive Manufacturing. J. Mater. Res. Technol. 2023, 24, 3284–3299. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Li, X.; Yan, Z. On Hot Isostatic Pressing Sintering of Fused Filament Fabricated 316L Stainless Steel—Evaluation of Microstructure, Porosity, and Tensile Properties. Mater. Lett. 2021, 296, 129854. [Google Scholar] [CrossRef]
- Naranjo, J.A.; Berges, C.; Gallego, A.; Herranz, G. A Novel Printable High-Speed Steel Filament: Towards the Solution for Wear-Resistant Customized Tools by AM Alternative. J. Mater. Res. Technol. 2021, 11, 1534–1547. [Google Scholar] [CrossRef]
- Chemkhi, M.; Djouda, J.M.; Bouaziz, M.A.; Kauffmann, J.; Hild, F.; Retraint, D. Effects of Mechanical Post-Treatments on Additive Manufactured 17-4PH Stainless Steel Produced by Bound Powder Extrusion. Procedia CIRP 2021, 104, 957–961. [Google Scholar] [CrossRef]
- Gong, C.; Marae Djouda, J.; Hmima, A.; Gaslain, F.; Maurer, T.; Panicaud, B. Analysis of the Effect of Surface Mechanical Attrition Treatment on the Mechanical Properties of 17-4 PH Stainless Steel Obtained by Material Extrusion. Prog. Addit. Manuf. 2025, 10, 755–773. [Google Scholar] [CrossRef]
- Naim, M.; Chemkhi, M.; Alhussein, A.; Retraint, D. Effect of Post-Treatments on the Tribological and Corrosion Behavior of 17–4PH Stainless Steel Processed via Fused Filament Fabrication. Addit. Manuf. Lett. 2023, 7, 100158. [Google Scholar] [CrossRef]
- Suwanpreecha, C.; Wiratkapun, K.; Sakkaeo, A.; Songkuea, S.; Parsompech, N.; Manonukul, A. Enhancing Surface Properties and Wear Performance of Material Extrusion Additively Manufactured 316L Stainless Steel Through Fine Particle Shot Peening with Hydroxyapatite for Biomedical Applications. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2025, 56, 1429–1448. [Google Scholar] [CrossRef]
- Pragana, J.P.M.; Sampaio, R.F.V.; Bragança, I.M.F.; Silva, C.M.A.; Martins, P.A.F. Hybrid Metal Additive Manufacturing: A State–of–the-Art Review. Adv. Ind. Manuf. Eng. 2021, 2, 100032. [Google Scholar] [CrossRef]
- Tecelli, T.; Andrew, O.; Juan, B.; Ahuir, I.; Hiren, T.; Kotadia, R.; Williams, S.T. The Effect of Surface Finish and Post—Processing on Mechanical Properties of 17-4 PH Stainless Steel Produced by the Atomic Diffusion Additive Manufacturing Process (ADAM). Int. J. Adv. Manuf. Technol. 2024, 130, 4053–4066. [Google Scholar] [CrossRef]
- Monzón, E.; Bordón, P.; Paz, R.; Monzón, M. Dimensional Characterization and Hybrid Manufacturing of Copper Parts Obtained by Atomic Diffusion Additive Manufacturing, and CNC Machining. Materials 2024, 17, 1437. [Google Scholar] [CrossRef]
- Di Pompeo, V.; Santoni, A.; Santecchia, E.; Spigarelli, S. On the Short-Term Creep Response at 482 °C (900 °F) of the 17-4PH Steel Produced by Bound Metal Deposition. Metals 2022, 12, 477. [Google Scholar] [CrossRef]
- Zhang, Y.; Roch, A. Fused Filament Fabrication and Sintering of 17-4PH Stainless Steel. Manuf. Lett. 2022, 33, 29–32. [Google Scholar] [CrossRef]
















| Post-Treatment Process | Specific Process | Analyzed Surface | Ra Initial [µm] | Ra Final [µm] | ΔRa (%) | Reference |
|---|---|---|---|---|---|---|
| MT | Milling | n.d. | 6.45 | 0.08 | −98.8% | [14] |
| MT | Milling | Lateral | 13.52 | 2.48 | −81.7% | [44] |
| MT | Milling | Lateral | 10.22 | 0.48 | −95.3% | [43] |
| ST | SMAT | n.d. | 0.39 | 0.04 | −89.7% | [39] |
| ST | SMAT | n.d. | 4.10 | 0.46 | −88.8% | [38] |
| ST | Shot peening | Lateral | 15.80 | 3.40 | −78.5% | [13] |
| Shot peening | Top | 6.60 | 2.90 | −56.1% | ||
| ST | Shot peening | Top | 2.42 | 1.95 | −19.4% | [41] |
| ST | Polishing | Lateral | 10.22 | 0.08 | −99.2% | [43] |
| Post-treatment | Detail | Material | Target 1 | Target 2 | Target 3 | Reference |
|---|---|---|---|---|---|---|
| HT | HIP | 316 L | Microstructure | Porosity | Tensile properties | [36] |
| ST | SMAT | 17-4 PH | Surface roughness | Tensile properties | Residual stresses | [38] |
| HT | Aging | 17-4 PH | Tensile properties | Porosity | - | [27] |
| HT | Aging | 17-4 PH | Tensile properties | Surface roughness | - | [28] |
| HT | Aging | 17-4 PH | Hardness | Porosity | - | [30] |
| HT | Aging | 17-4 PH | - | Tensile properties | Hardness | [43] |
| ST | Polishing | Surface roughness | - | - | ||
| MT | Milling | - | Tensile properties | Surface roughness | ||
| ST | Shot peening | 17-4 PH | Surface roughness | - | - | [13] |
| HT | Aging | - | Fatigue properties | Tensile properties | ||
| HT | Aging | 17-4 PH | Creep | Hardness | - | [45] |
| MT | Milling | Tool steel | Surface roughness | Microstructure | Residual stresses | [14] |
| MT | Milling | Copper | Dimensional accuracy | Surface roughness | - | [44] |
| HT | Aging | 17-4 PH | Microstructure | Corrosion resistance | - | [34] |
| HT | Aging | 17-4 PH | Microstructure | Tensile properties | Corrosion resistance | [31] |
| MT | Milling | Tensile properties | - | - | ||
| HT | Aging | 17-4 PH | Tensile properties | Porosity | - | [46] |
| HT | Aging | 17-4 PH | Microstructure | Tensile properties | Hardness | [29] |
| HT | Aging | Superalloy | Hardness | Toughness | Creep | [18] |
| HT | Aging | 17-4 PH | Microstructure | Tensile properties | - | [35] |
| HT | Quenching | Tool steel | Wear | Hardness | - | [37] |
| HT | HIP | Copper | Porosity | Tensile properties | Electrical properties | [15] |
| HT | Aging | 17-4 PH | Porosity | Tensile properties | Microstructure | [21] |
| ST | Shot peening | 316 L | Surface roughness | Wear | Hardness | [41] |
| MT | Milling | 316 L | Dimensional accuracy | Bending properties | - | [12] |
| ST | SMAT | 17-4 PH | Tensile properties | Porosity | Surface roughness | [39] |
| ST | SMAT | 17-4 PH | Surface roughness | Wear | Corrosion resistance | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pellegrini, A.; Guerra, M.G.; Spina, R.; Lavecchia, F. Enhancing the Performance of Metal Additive Manufacturing Parts: A Review of Post-Treatment Processes for Extrusion and Sinter-Based Technology. J. Manuf. Mater. Process. 2025, 9, 357. https://doi.org/10.3390/jmmp9110357
Pellegrini A, Guerra MG, Spina R, Lavecchia F. Enhancing the Performance of Metal Additive Manufacturing Parts: A Review of Post-Treatment Processes for Extrusion and Sinter-Based Technology. Journal of Manufacturing and Materials Processing. 2025; 9(11):357. https://doi.org/10.3390/jmmp9110357
Chicago/Turabian StylePellegrini, Alessandro, Maria Grazia Guerra, Roberto Spina, and Fulvio Lavecchia. 2025. "Enhancing the Performance of Metal Additive Manufacturing Parts: A Review of Post-Treatment Processes for Extrusion and Sinter-Based Technology" Journal of Manufacturing and Materials Processing 9, no. 11: 357. https://doi.org/10.3390/jmmp9110357
APA StylePellegrini, A., Guerra, M. G., Spina, R., & Lavecchia, F. (2025). Enhancing the Performance of Metal Additive Manufacturing Parts: A Review of Post-Treatment Processes for Extrusion and Sinter-Based Technology. Journal of Manufacturing and Materials Processing, 9(11), 357. https://doi.org/10.3390/jmmp9110357

