Synthetic-to-Real Composite Semantic Segmentation in Additive Manufacturing
Abstract
:1. Introduction
- A technique for generating synthetic image-mask pairs of layer-by-layer ideal 3D printing processes has been developed for subsequent neural network training;
- Three independent labeled synthetic image datasets for (a) the entire part, (b) the top (last printed) layer, and (c) the infill, shell, and supports for 3D-printed objects have been created;
- A neural network was trained for the semantic segmentation of the entire printed part, as well as its last printed top layer and internal structure;
- Image-to-image style transfer approaches to improve segmentation results have been explored.
2. Background
3. Methods
3.1. Creation of Synthetic Image Datasets
3.2. Semantic Image Segmentation
3.3. Image-to-Image Translation
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, Use, and Fate of all Plastics Ever Made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic Waste Inputs From Land Into the Ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Laplume, A.O.; Petersen, B.; Pearce, J.M. Global value chains from a 3D printing perspective. J. Int. Bus. Stud. 2016, 47, 595–609. [Google Scholar] [CrossRef]
- Petersen, E.E.; Pearce, J.M. Emergence of home manufacturing in the developed world: Return on investment for open-source 3-D printers. Technologies 2017, 5, 7. [Google Scholar] [CrossRef]
- Pearce, J.M.; Qian, J.Y. Economic Impact of DIY Home Manufacturing of Consumer Products with Low-cost 3D Printing from Free and Open Source Designs. Eur. J. Soc. Impact Circ. Econ. 2022, 3, 1–24. [Google Scholar] [CrossRef]
- Hunt, E.; Zhang, C.; Anzalone, N.; Pearce, J.M. Polymer recycling codes for distributed manufacturing with 3-D printers. Resour. Conserv. Recycl. 2015, 97, 24–30. [Google Scholar] [CrossRef]
- Shahrubudin, N.; Lee, T.C.; Ramlan, R. An overview on 3D printing technology: Technological, materials, and applications. Procedia Manuf. 2019, 35, 1286–1296. [Google Scholar] [CrossRef]
- Global 3D Printing Filament Market By Material, By Type, By End Use, By Region, Competition, Forecast & Opportunities, 2024. May, 2019. Available online: https://www.reportbuyer.com/product/5778909/global-3d-printing-filament-market-by-material-by-typeby-end-use-by-regioncompetition-forecast-and-opportunities-2024.html (accessed on 10 January 2024).
- Wittbrodt, B.T.; Glover, A.G.; Laureto, J.; Anzalone, G.C.; Oppliger, D.; Irwin, J.L.; Pearce, J.M. Life-cycle economic analysis of distributed manufacturing with open-source 3-D printers. Mechatronics 2013, 23, 713–726. [Google Scholar] [CrossRef]
- Sharp, S.; 3DQue Systems, Vancouver, BC, Canada. Personal communication, 4 June 2022.
- Kang, H.D. Analysis of furniture design cases using 3D printing technique. J. Korea Contents Assoc. 2015, 15, 177–186. [Google Scholar] [CrossRef]
- Bow, J.K.; Gallup, N.; Sadat, S.A.; Pearce, J.M. Open source surgical fracture table for digitally distributed manufacturing. PLoS ONE 2022, 17, e0270328. [Google Scholar] [CrossRef]
- Novak, J.I.; O’Neill, J. A design for additive manufacturing case study: Fingerprint stool on a BigRep ONE. Rapid Prototyp. J. 2019, 25, 1069–1079. [Google Scholar] [CrossRef]
- Petsiuk, A.; Lavu, B.; Dick, R.; Pearce, J.M. Waste Plastic Direct Extrusion Hangprinter. Inventions 2022, 7, 70. [Google Scholar] [CrossRef]
- Woern, A.L.; Byard, D.J.; Oakley, R.B.; Fiedler, M.J.; Snabes, S.L.; Pearce, J.M. Fused particle fabrication 3-D printing: Recycled materials’ optimization and mechanical properties. Materials 2018, 11, 1413. [Google Scholar] [CrossRef]
- Oleff, A.; Kuster, B.; Stonis, M.; Overmeyer, L. Process monitoring for material extrusion additive manufacturing: A state-of-the-art review. Prog. Addit. Manuf. 2021, 6, 705–730. [Google Scholar] [CrossRef]
- Ceruti, A.; Liverani, A.; Bombardi, T. Augmented vision and interactive monitoring in 3D printing process. Int. J. Inter. Des. Manuf. 2017, 11, 385–395. [Google Scholar] [CrossRef]
- Nuchitprasitchai, S.; Roggemann, M.C.; Pearce, J.M. Factors effecting real-time optical monitoring of fused filament 3D printing. Prog. Addit. Manuf. J. 2017, 2, 133–149. [Google Scholar] [CrossRef]
- Johnson, A.; Zarezadeh, H.; Han, X.; Bibb, R.; Harris, R. Establishing in-process inspection requirements for material extrusion additive manufacturing. In Proceedings of the Fraunhofer Direct Digital Manufacturing Conference, Berlin, Germany, 16–17 March 2016. [Google Scholar]
- Hurd, S.; Camp, C.; White, J. Quality assurance in additive manufacturing through mobile computing. In Mobile Computing, Applications, and Services: 7th International Conference, MobiCASE 2015, Berlin, Germany, 12–13 November 2015; Springer: Cham, Switzerland, 2015; pp. 203–220. [Google Scholar]
- Jeong, H.; Kim, M.; Park, B.; Lee, S. Vision-Based Real-Time Layer Error Quantification for Additive Manufacturing. In Proceedings of the International Manufacturing Science And Engineering Conference, Los Angeles, CA, USA, 4 June 2017. [Google Scholar]
- Wasserfall, F.; Ahlers, D.; Hendrich, N. Optical In-Situ Verification of 3D-Printed Electronic Circuits. In Proceedings of the 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), Vancouver, BC, Canada, 22–26 August 2019; pp. 1302–1307. [Google Scholar] [CrossRef]
- Straub, J. 3D printing cybersecurity: Detecting and preventing attacks that seek to weaken a printed object by changing fill level. In Proceedings of the Dimensional Optical Metrology and Inspection for Practical Applications VI, Anaheim, CA, USA, 9 June 2017. [Google Scholar] [CrossRef]
- Kutzer, M.D.; DeVries, L.D.; Blas, C.D. Part monitoring and quality assessment of conformal additive manufacturing using image reconstruction. In Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Quebec City, QC, Canada, 26–29 August 2018. [Google Scholar] [CrossRef]
- Chen, Z.; Horowitz, R. Vision-assisted Arm Motion Planning for Freeform 3D Printing. In Proceedings of the 2019 American Control Conference (ACC), Philadelphia, PA, USA, 10–12 July 2019; pp. 4204–4209. [Google Scholar] [CrossRef]
- Shen, H.; Du, W.; Sun, W.; Xu, Y.; Fu, J. Visual detection of surface defects based on self-feature comparison in robot 3-D printing. Appl. Sci. 2020, 10, 235. [Google Scholar] [CrossRef]
- Malik, A.; Lhachemi, H.; Ploennigs, J.; Ba, A.; Shorten, R. An application of 3D model reconstruction and augmented reality for real-time monitoring of additive manufacturing. Procedia CIRP 2019, 81, 346–351. [Google Scholar] [CrossRef]
- Petsiuk, A.; Pearce, J.M. Open source computer vision-based layerwise 3D printing analysis. Addit. Manuf. 2020, 36, 101473. [Google Scholar] [CrossRef]
- Petsiuk, A.; Pearce, J.M. Towards smart monitored AM: Open source in-situ layer-wise 3D printing image anomaly detection using histograms of oriented gradients and a physics-based rendering engine. Addit. Manuf. 2022, 52, 102690. [Google Scholar] [CrossRef]
- Spaghetti Detective. Available online: https://www.obico.io/the-spaghettidetective.html (accessed on 10 January 2024).
- The Spaghetti Detective Plugin. Available online: https://github.com/TheSpaghettiDetective/OctoPrintTheSpaghettiDetective (accessed on 10 January 2024).
- Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using Deep Learning: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 3523–3542. [Google Scholar] [CrossRef] [PubMed]
- Blender: The Free and Open Source 3D Creation Suite. Available online: https://www.blender.org (accessed on 10 January 2024).
- Csurka, G.; Volpi, R.; Chidlovskii, B. Unsupervised Domain Adaptation for Semantic Image Segmentation: A Comprehensive Survey. arXiv 2021, arXiv:2112.03241. [Google Scholar]
- Farahani, A.; Voghoei, S.; Rasheed, K.; Arabnia, H.R. A Brief Review of Domain Adaptation. In Advances in Data Science and Information Engineering. Transactions on Computational Science and Computational Intelligence; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Imbusch, B.; Schwarz, M.; Behnke, S. Synthetic-to-Real Domain Adaptation using Contrastive Unpaired Translation. arXiv 2022, arXiv:2203.09454. [Google Scholar]
- Li, P.; Liang, X.; Jia, D.; Xing, E.P. Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption. arXiv 2018, arXiv:1801.01726. [Google Scholar]
- Lee, S.; Park, E.; Yi, H.; Lee, S.H. StRDAN: Synthetic-to-Real Domain Adaptation Network for Vehicle Re-Identification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Zhu, J.-Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2242–2251. [Google Scholar] [CrossRef]
- Ulku, I.; Akagund, E. A Survey on Deep Learning-based Architectures for Semantic Segmentation on 2D Images. Appl. Artif. Intell. 2022, 36, 2032924. [Google Scholar] [CrossRef]
- Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016. [Google Scholar]
- Richter, S.R.; Vineet, V.; Roth, S.; Koltun, V. Playing for Data: Ground Truth from Computer Games. arXiv 2016, arXiv:1608.02192. [Google Scholar]
- Ros, G.; Sellart, L.; Materzynska, J.; Vazquez, D.; Lopez, A.M. The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 3234–3243. [Google Scholar] [CrossRef]
- Nikolenko, S.I. Synthetic Data for Deep Learning. SOIA; Springer: Cham, Switzerland, 2021; Volume 174. [Google Scholar] [CrossRef]
- de Melo, C.M.; Torralba, A.; Guibas, L.; DiCarlo, J.; Chellappa, R.; Hodgins, J. Next-generation deep learning based on simulators and synthetic data. Trends Cogn. Sci. 2022, 26, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Ward, D.; Moghadam, P.; Hudson, N. Deep Leaf Segmentation Using Synthetic Data. arXiv 2018, arXiv:1807.10931. [Google Scholar]
- Boikov, A.; Payor, V.; Savelev, R.; Kolesnikov, A. Synthetic Data Generation for Steel Defect Detection and Classification Using Deep Learning. Symmetry 2021, 13, 1176. [Google Scholar] [CrossRef]
- Valizadeh, M.; Wolff, S.J. Convolutional Neural Network applications in additive manufacturing: A review. Adv. Ind. Manuf. Eng. 2022, 4, 100072. [Google Scholar] [CrossRef]
- Banadaki, Y.; Razaviarab, N.; Fekrmandi, H.; Sharifi, S. Toward Enabling a Reliable Quality Monitoring System for Additive Manufacturing Process using Deep Convolutional Neural Networks. arXiv 2020, arXiv:2003.08749. [Google Scholar]
- Saluja, A.; Xie, J.; Fayazbakhsh, K. A closed-loop in-process warping detection system for fused filament fabrication using convolutional neural networks. J. Manuf. Proc. 2020, 58, 407–415. [Google Scholar] [CrossRef]
- Jin, Z.; Zhang, Z.; Gu, G.X. Automated Real-Time Detection and Prediction of Interlayer Imperfections in Additive Manufacturing Processes Using Artificial Intelligence. Adv. Intell. Syst. 2019, 2, 1900130. [Google Scholar] [CrossRef]
- Brion, D.A.J.; Pattinson, S.W. Generalisable 3D printing error detection and correction via multi-head neural networks. Nat. Commun. 2022, 13, 4654. [Google Scholar] [CrossRef]
- Wong, V.W.H.; Ferguson, M.; Law, K.H.; Lee, Y.T.; Witherell, P. Segmentation of Additive Manufacturing Defects Using U-Net. ASME J. Comput. Inf. Sci. Eng. 2022, 22, 031005. [Google Scholar] [CrossRef]
- Cannizzaro, D.; Varrella, A.G.; Paradiso, S.; Sampieri, R.; Chen, Y.; Macii, A.; Patti, E.; Di Cataldo, S. In-Situ Defect Detection of Metal Additive Manufacturing: An Integrated Framework. IEEE Trans. Emerg. Top. Comput. 2022, 10, 74–86. [Google Scholar] [CrossRef]
- Davtalab, O.; Kazemian, A.; Yuan, X.; Khoshnevis, B. Automated inspection in robotic additive manufacturing using deep learning for layer deformation detection. J. Intell. Manuf. 2022, 33, 771–784. [Google Scholar] [CrossRef]
- Pearce, J.M.; Petsiuk, A. Synthetic-to-Real Composite Semantic Segmentation in Additive Manufacturing. OSF Source File Repository. Available online: https://osf.io/h8r45 (accessed on 10 January 2024).
- Thingiverse: An Open Catalog of Computer-Aided Designs for 3D Printing. Available online: https://www.thingiverse.com (accessed on 10 January 2024).
- MatterControl: 3D Printing Software. Available online: https://www.matterhackers.com/store/l/mattercontrol/sk/MKZGTDW6 (accessed on 10 January 2024).
- Lopmeier, H. Blender-Gcode-Importer. Available online: https://github.com/Heinz-Loepmeier/Blender-Gcode-Import (accessed on 10 January 2024).
- Blender: Shader Nodes Library. Available online: https://docs.blender.org/manual/en/3.4/render/shader_nodes/index.html (accessed on 10 January 2024).
- Blender: Noise Texture Node. Available online: https://docs.blender.org/manual/en/3.4/render/shader_nodes/textures/noise.html (accessed on 10 January 2024).
- Blender: Voronoi Texture Node. Available online: https://docs.blender.org/manual/en/3.4/render/shader_nodes/textures/voronoi.html (accessed on 10 January 2024).
- Blender: Principled BSDF. Available online: https://docs.blender.org/manual/en/3.4/render/shader_nodes/shader/principled.html (accessed on 10 January 2024).
- Blender: Glossy BSDF. Available online: https://docs.blender.org/manual/en/3.4/render/shader_nodes/shader/glossy.html (accessed on 10 January 2024).
- Blender: Diffuse BSDF. Available online: https://docs.blender.org/manual/en/3.4/render/shader_nodes/shader/diffuse.html (accessed on 10 January 2024).
- Blender: Transparent BSDF. Available online: https://docs.blender.org/manual/en/3.4/render/shader_nodes/shader/transparent.html (accessed on 10 January 2024).
- Blender API. Available online: https://docs.blender.org/api/current/index.html (accessed on 10 January 2024).
- Blender Compositing. Available online: https://docs.blender.org/manual/en/3.4/compositing/index.html (accessed on 10 January 2024).
- Blender: Object Pass Index. Available online: https://docs.blender.org/manual/en/3.4/render/layers/passes.html (accessed on 10 January 2024).
- Blender Cycles. Available online: https://docs.blender.org/manual/en/3.4/render/cycles/index.html (accessed on 10 January 2024).
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar]
- Qin, X.; Zhang, Z.; Huang, C.; Dehghan, M.; Zaiane, O.R.; Jagersand, M. U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection. arXiv 2020, arXiv:2005.09007. [Google Scholar] [CrossRef]
- Huang, H.; Lin, L.; Tong, R.; Hu, H.; Zhang, Q.; Iwamoto, Y.; Han, X.; Chen, Y.-W.; Wu, J. UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation. arXiv 2020, arXiv:2004.08790. [Google Scholar]
- Toldo, M.; Michieli, U.; Zanuttigh, P. Unsupervised Domain Adaptation in Semantic Segmentation via Orthogonal and Clustered Embeddings. arXiv 2020, arXiv:2011.12616. [Google Scholar]
- Yang, J.; Li, C.; An, W.; Ma, H.; Guo, Y.; Rong, Y.; Zhao, P.; Huang, J. Exploring Robustness of Unsupervised Domain Adaptation in Semantic Segmentation. arXiv 2021, arXiv:2105.10843. [Google Scholar]
- Guo, X.; Yang, C.; Li, B.; Yuan, Y. MetaCorrection: Domain-aware Meta Loss Correction for Unsupervised Domain Adaptation in Semantic Segmentation. arXiv 2021, arXiv:2103.05254. [Google Scholar]
- Buda, M. U-Net for Brain Segmentation. 2019. Available online: https://pytorch.org/hub/mateuszbudabrain-segmentation-pytorchunet (accessed on 10 January 2024).
- Battocchio, F. U-Net Architecture for Multiclass Semantic Segmentation. 2020. Available online: https://github.com/France1/unet-multiclasspytorch (accessed on 10 January 2024).
- Hinton, G.E.; Roweis, S.T. Stochastic Neighbor Embedding. In Advances in Neural Information Processing Systems; Becker, S., Thrun, S., Obermayer, K., Eds.; MIT Press: Cambridge, CA, USA, 2002; Volume 15. [Google Scholar]
- van der Maaten, L.J.P.; Hinton, G.E. Visualizing High-Dimensional Data Using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Xu, T.; Chen, W.; Wang, P.; Wang, F.; Li, H.; Jin, R. CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation. arXiv 2022, arXiv:2109.06165. [Google Scholar]
- Xie, B.; Li, S.; Li, M.; Liu, C.H.; Huang, G.; Wang, G. SePiCo: SemanticGuided Pixel Contrast for Domain Adaptive Semantic Segmentation. arXiv 2022, arXiv:2204.08808. [Google Scholar] [CrossRef] [PubMed]
- Hoyer, L.; Dai, D.; Van Gool, L. HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation. arXiv 2022, arXiv:2204.13132. [Google Scholar]
- Han, P.; Zhao, G. A review of edge-based 3D tracking of rigid objects. Virtual Real. Intell. Hardw. 2019, 1, 580–596. [Google Scholar] [CrossRef]
- Wang, B.; Zhong, F.; Qin, X. Robust edge-based 3D object tracking with direction-based pose validation. Multimed. Tools Appl. 2019, 78, 12307–12331. [Google Scholar] [CrossRef]
- OctoPrint: An Open Source 3D Printer Controller Application. Available online: https://octoprint.org (accessed on 10 January 2024).
No. of Images | Test Dataset | Background | Top Layer | Shell | Support | Infill |
---|---|---|---|---|---|---|
89 | Whole part segmentation (real images) | 78.16 | — | — | — | — |
101 | Whole part segmentation (synthetic render images) | 94.90 | — | — | — | — |
68 | Top layer segmentation (synthetic renders) | 99.74 | 73.33 | — | — | — |
57 | Internal structure segmentation (synthetic renders) | 94.52 | — | 55.31 | 69.45 | 78.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petsiuk, A.; Singh, H.; Dadhwal, H.; Pearce, J.M. Synthetic-to-Real Composite Semantic Segmentation in Additive Manufacturing. J. Manuf. Mater. Process. 2024, 8, 66. https://doi.org/10.3390/jmmp8020066
Petsiuk A, Singh H, Dadhwal H, Pearce JM. Synthetic-to-Real Composite Semantic Segmentation in Additive Manufacturing. Journal of Manufacturing and Materials Processing. 2024; 8(2):66. https://doi.org/10.3390/jmmp8020066
Chicago/Turabian StylePetsiuk, Aliaksei, Harnoor Singh, Himanshu Dadhwal, and Joshua M. Pearce. 2024. "Synthetic-to-Real Composite Semantic Segmentation in Additive Manufacturing" Journal of Manufacturing and Materials Processing 8, no. 2: 66. https://doi.org/10.3390/jmmp8020066
APA StylePetsiuk, A., Singh, H., Dadhwal, H., & Pearce, J. M. (2024). Synthetic-to-Real Composite Semantic Segmentation in Additive Manufacturing. Journal of Manufacturing and Materials Processing, 8(2), 66. https://doi.org/10.3390/jmmp8020066