Using (VA)RTM with a Rigid Mould to Produce Fibre Metal Laminates with Proven Impact Strength
Abstract
:1. Introduction
2. Experimental Work
2.1. Materials
2.2. Production Procedure
2.3. Specimen and Testing Method
3. Results and Discussion
3.1. Results of the New Processing Technique
3.2. Results of the Performed Impact Tests
4. Summary and Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Gunnink, J.W.; Vlot, A.; de Vries, T.J.; van der Hoeven, W. Glare technology development 1997–2000. Appl. Compos. Mater. 2002, 9, 201–219. [Google Scholar] [CrossRef]
- Fibre Metal Laminates. An Introduction; Vlot, A.; Gunnink, J.W. (Eds.) Springer: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Wu, G.; Yang, J.-M.; Hahn, H.T. The impact properties and damage tolerance and of bi-directionally reinforced fiber metal laminates. J. Mater. Sci. 2007, 42, 948–957. [Google Scholar] [CrossRef]
- Wu, G.; Yang, J.-M. The mechanical behavior of GLARE laminates for aircraft structures. JOM 2005, 57, 72–79. [Google Scholar] [CrossRef]
- Asundi, A.; Choi, A.Y.N. Fiber metal laminates: An advanced material for future aircraft. J. Mater. Process. Technol. 1997, 63, 384–394. [Google Scholar] [CrossRef]
- Marissen, R. Fatigue Crack Growth in ARALL. A Hybrid Aluminium-Aramid Composite Material: Crack Growth Mechanisms and Quantitative Predictions of the Crack Growth Rates. Ph.D. Thesis, TU Delft, Delft, The Netherlands, 1988. [Google Scholar]
- Botelho, E.C.; Silva, R.A.; Pardini, L.C.; Rezende, M.C. A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures. Mater. Res. 2006, 9, 247–256. [Google Scholar] [CrossRef] [Green Version]
- Alderliesten, R.; Homan, J. Fatigue and damage tolerance issues of Glare in aircraft structures. Int. J. Fatigue 2006, 28, 1116–1123. [Google Scholar] [CrossRef]
- Seyed Yaghoubi, A.; Liu, Y.; Liaw, B. Low-velocity impact on GLARE 5 fiber-metal laminates: Influences of specimen thickness and impactor mass. J. Aerosp. Eng. 2012, 25, 409–420. [Google Scholar] [CrossRef]
- Park, S.Y.; Choi, W.J.; Choi, H.S. A comparative study on the properties of GLARE laminates cured by autoclave and autoclave consolidation followed by oven postcuring. Int. J. Adv. Manuf. Technol. 2010, 49, 605–613. [Google Scholar] [CrossRef]
- Sinke, J. Manufacturing of GLARE parts and structures. Appl. Compos. Mater. 2003, 10, 293–305. [Google Scholar] [CrossRef]
- Abouhamzeh, M.; Sinke, J.; Benedictus, R. On the prediction of cure-process shape deviations in fibre metal laminates. J. Compos. Mater. 2014, 49, 1705–1716. [Google Scholar] [CrossRef]
- Abouhamzeh, M.; Sinke, J.; Benedictus, R. Investigation of curing effects on distortion of fibre metal laminates. Compos. Struct. 2015, 122, 546–552. [Google Scholar] [CrossRef]
- Abrams, F.; Davé, R.S. Processing of Composites; Hanser: Munich, Germany, 2000. [Google Scholar]
- De Mendibil, I.O.; Aretxabaleta, L.; Sarrionandia, M.; Mateos, M.; Aurrekoetxea, J. Impact behaviour of glass fibre-reinforced epoxy/aluminium fibre metal laminate manufactured by Vacuum Assisted Resin Transfer Moulding. Compos. Struct. 2016, 140, 118–124. [Google Scholar] [CrossRef]
- Baumert, E.K.; Johnson, W.S.; Cano, R.J.; Jensen, B.J.; Weiser, E.S. Fatigue damage development in new fibre metal laminates made by the VARTM process. Fatigue Fract. Eng. Mater. Struct. 2011, 34, 240–249. [Google Scholar] [CrossRef]
- Jensen, B.J.; Cano, R.J.; Hales, S.J.; Alexa, J.A. Fiber metal laminates made by the VARTM process. In Proceedings of the ICCM-17 17th International Conference on Composite Materials, Edinburgh, UK, 27–31 July 2009. [Google Scholar]
- Ostapiuk, M.; Surowska, B.; Bieniaś, J. Interface analysis of fiber metal laminates. Compos. Interfaces 2014, 21, 309–318. [Google Scholar] [CrossRef]
- Wu, W.; Abliz, D.; Jiang, B.; Ziegmann, G.; Meiners, D. A novel process for cost effective manufacturing of fiber metal laminate with textile reinforced pCBT composites and aluminum alloy. Compos. Struct. 2014, 108, 172–180. [Google Scholar] [CrossRef]
- Wang, Z.; Bobbert, M.; Dammann, C.; Zinn, C.; Lauter, C.; Mahnken, R.; Meschut, G.; Schaper, M.; Troester, T. Influences of interface and surface pretreatment on the mechanical properties of metal-CFRP hybrid structures manufactured by resin transfer moulding. IJAUTOC 2016, 2, 272–298. [Google Scholar] [CrossRef]
- Cohen, S.M. Review: Replacements for Chromium Pretreatments on Aluminum. Corrosion 1995, 51, 71–78. [Google Scholar] [CrossRef]
- Tendero, C.; Tixier, C.; Tristant, P.; Desmaison, J.; Leprince, P. Atmospheric pressure plasmas: A review. Spectrochim. Acta Part B At. Spectrosc. 2006, 61, 2–30. [Google Scholar] [CrossRef]
- Kaynak, B.; Alpan, C.; Kratzer, M.; Ganser, C.; Teichert, C.; Kern, W. Anti-adhesive layers on stainless steel using thermally stable dipodal perfluoroalkyl silanes. Appl. Surf. Sci. 2017, 416, 824–833. [Google Scholar] [CrossRef]
- Tang, S.; Lu, N.; Myung, S.-W.; Choi, H.-S. Enhancement of adhesion strength between two AISI 316 L stainless steel plates through atmospheric pressure plasma treatment. Surf. Coat. Technol. 2006, 200, 5220–5228. [Google Scholar] [CrossRef]
- Yamamoto, T.; Newsome, J.R.; Ensor, D.S. Modification of surface energy, dry etching, and organic film removal using atmospheric-pressure pulsed-corona plasma. IEEE Trans. Ind. Appl. 1995, 31, 494–499. [Google Scholar] [CrossRef]
Production Step | (VA)RTM [min] | Prepreg/Autoclave [min] |
---|---|---|
Tooling preparation | 25 | 25 |
Material cutting | 30 | 30 |
Surface treatment | 15 | 15 |
Hand layup/preforming | 10 | 30 |
Vacuum bagging | - | 25 |
Cure cycle | 25 | 260 |
Debagging/Demolding | 5 | 10 |
Total production time | 110 | 395 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hergan, P.; Li, Y.; Zaloznik, L.; Kaynak, B.; Arbeiter, F.; Fauster, E.; Schledjewski, R. Using (VA)RTM with a Rigid Mould to Produce Fibre Metal Laminates with Proven Impact Strength. J. Manuf. Mater. Process. 2018, 2, 38. https://doi.org/10.3390/jmmp2020038
Hergan P, Li Y, Zaloznik L, Kaynak B, Arbeiter F, Fauster E, Schledjewski R. Using (VA)RTM with a Rigid Mould to Produce Fibre Metal Laminates with Proven Impact Strength. Journal of Manufacturing and Materials Processing. 2018; 2(2):38. https://doi.org/10.3390/jmmp2020038
Chicago/Turabian StyleHergan, Patrick, Yanxiao Li, Lasse Zaloznik, Baris Kaynak, Florian Arbeiter, Ewald Fauster, and Ralf Schledjewski. 2018. "Using (VA)RTM with a Rigid Mould to Produce Fibre Metal Laminates with Proven Impact Strength" Journal of Manufacturing and Materials Processing 2, no. 2: 38. https://doi.org/10.3390/jmmp2020038
APA StyleHergan, P., Li, Y., Zaloznik, L., Kaynak, B., Arbeiter, F., Fauster, E., & Schledjewski, R. (2018). Using (VA)RTM with a Rigid Mould to Produce Fibre Metal Laminates with Proven Impact Strength. Journal of Manufacturing and Materials Processing, 2(2), 38. https://doi.org/10.3390/jmmp2020038