Effect of Casting Speed on Solidification Behavior and Porosity Defects in Low-Oxygen Copper Casting Rods Using SCR Technology
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Trials
2.2. Numerical Models of the SCR Casting Wheel
2.2.1. Geometric Model
2.2.2. Mathematical Calculation Model
2.2.3. Boundary Conditions
2.2.4. Physical Properties
3. Results and Discussion
3.1. Flow Field Distribution of Molten Copper Within Casting Wheel
3.2. Temperature Distribution of Casting Rod Within Casting Wheel
3.3. Liquid Fraction Within Casting Rod
3.4. Plant Trials
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chia, E.H.; Adams, R.D. The metallurgy of southwire’s continuous rod. JOM 1981, 33, 68–74. [Google Scholar] [CrossRef]
- Schwarze, M. CONTIROD equipment for copper wire rod production: The highest quality for minimal expenses. Tsvetnye Met. 2005, 4, 95–100. [Google Scholar]
- Kayali, E.S.; El-Sayed, M.; Funke, P. Deformation behaviour during drawing of copper rods produced using various processes. Mater. Sci. Technol. 1990, 6, 872–882. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, Y.; Qu, X. Mechanism of and key technologies for copper bonding in the hot rolling of SCR continuous casting and rolling. Appl. Sci. 2021, 11, 11023. [Google Scholar] [CrossRef]
- Ba, L.; Yu, H.; Fu, R.; Wang, J.; Yang, R. Effect and mechanism of vacuum melting on impurity elements, pores and inclusions in pure copper. Vacuum 2025, 235, 114140. [Google Scholar] [CrossRef]
- Bhagavath, S.; Gong, Z.; Wigger, T.; Shah, S.; Ghaffari, B.; Li, M.; Marathe, S.; Karagadde, S.; Lee, P.D. Mechanisms of gas and shrinkage porosity formation in solidifying shear bands. J. Mater. Process. Technol. 2022, 299, 117338. [Google Scholar] [CrossRef]
- Drenchev, L.; Sobczak, J.; Sobczak, N.; Sha, W.; Malinov, S. A comprehensive model of ordered porosity formation. Acta Mater. 2007, 55, 6459–6471. [Google Scholar] [CrossRef]
- Xu, Y.C.; Li, G.Y.; Jiang, W.M.; Zhan, J.M.; Yu, Y.; Fan, Z.T. Investigation on characteristic and formation mechanism of porosity defects of Al-Li alloys prepared by sand casting. J. Mater. Res. Technol. 2022, 19, 4063–4075. [Google Scholar] [CrossRef]
- Finkelstein, A.; Schaefer, A.; Dubinin, N. Dehydrogenation of AlSi7Fe1 melt during in situ composite production by oxygen blowing. Metals 2021, 11, 551. [Google Scholar] [CrossRef]
- Nakajima, H.; Ide, T. Fabrication of porous copper with directional pores through thermal decomposition of compounds. Metall. Mater. Trans. A 2008, 39, 390–394. [Google Scholar] [CrossRef]
- Magnusson, H.; Karin, F. Diffusion, permeation and solubility of hydrogen in copper. J. Phase Equilibria Diffus. 2017, 38, 65–69. [Google Scholar] [CrossRef]
- Gao, K.; Peng, Y.; Abdelwahed, M.; Liu, C. Numerical simulation of solidification process in an SCR wheel and belt continuous caster. J. Mater. Eng. Perform. 2024, 34, 5950–5960. [Google Scholar] [CrossRef]
- Li, Q.H.; Qin, B.M.; Zhang, J.S.; Dong, H.B.; Li, M.; Tao, B.; Mao, X.P.; Liu, Q. Design Improvement of four-strand continuous-casting tundish using physical and numerical simulation. Materials 2023, 16, 849. [Google Scholar]
- Xu, M.G.; Zhu, M.Y. Numerical simulation of the fluid flow, heat transfer, and solidification during the twin-roll continuous casting of steel and aluminum. Metall. Mater. Trans. B 2016, 47, 740–748. [Google Scholar]
- Lee, T.W.; Hnizdil, M.; Chabicovsky, M.; Raudensky, M. Approximate solution to the spray heat transfer problem at high surface temperatures and liquid mass fluxes. Heat Transf. Eng. 2019, 40, 1649–1655. [Google Scholar]
- Zhang, Y.X.; Wang, J.J.; Yang, W.; Zhang, L.F. Effect of cooling rate on the evolution of nonmetallic inclusions in a pipeline steel. Acta Metall. Sin. 2023, 59, 1603–1612. [Google Scholar]
- Mehrotra, S.P.; Tandon, R. A mathematical-model of a single-roll continuous strip caster based on fluid-mechanics considerations. Steel Res. 1992, 63, 205–211. [Google Scholar]
- Ferreira, A.F.; Chrisóstimo, W.B.; Sales, R.C.; Garçao, W.J.L.; Sousa, N.D. Effect of pouring temperature on microstructure and microsegregation of as-cast aluminum alloy. Int. J. Adv. Manuf. Technol. 2019, 104, 957–965. [Google Scholar] [CrossRef]
- Talbot, D.E. Effects of hydrogen in Aluminium, Magnesium, Copper, and their alloys. Int. Metall. Rev. 1975, 20, 166–184. [Google Scholar]
- Campbell, J. Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design; Butterworth-Heinemann: Waltham, MA, USA, 2015. [Google Scholar]
- Lee, W.; Hyun, Y.T.; Won, J.W.; Lee, H.; Kang, S.H.; Yoon, J. Numerical simulation using a coupled lattice Boltzmann-cellular automata method to predict the microstructure of Ti-6Al-4V after electron beam cold hearth melting. J. Mater. Res. Technol. 2025, 36, 3796–3806. [Google Scholar]
- Chen, H.; Guo, N.; Liu, C.; Zhang, X.; Xu, C.S.; Wang, G.D. Insight into hydrostatic pressure effects on diffusible hydrogen content in wet welding joints using in-situ X-Ray imaging method. Int. J. Hydrogen Energy 2020, 45, 10219–10226. [Google Scholar] [CrossRef]









| Thermal Conductivity | Density | Thickness | Heat Capacity |
|---|---|---|---|
| 44.5 W/(m·K) | 7850 kg/m3 | 2 mm | 475 J/(kg·K) |
| Thermal Conductivity | Density | Heat Capacity |
|---|---|---|
| 400 W/(m·K) | 8960 kg/m3 | 385 J/(kg·K) |
| Thermal Conductivity | Density | Heat Capacity | Dynamic Viscosity | Solidification Temperature |
|---|---|---|---|---|
| 320 W/(m·K) | 8960 kg/m3 | 385 J/(kg·K) | 0.00434 Pa·s | 1083 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yu, Q.; Zhang, L.; Wan, T.; Tang, D.; Zhang, Y.; Wu, Z.; Zhong, F.; Le, S.; Hu, Y.; Yu, H. Effect of Casting Speed on Solidification Behavior and Porosity Defects in Low-Oxygen Copper Casting Rods Using SCR Technology. J. Manuf. Mater. Process. 2026, 10, 14. https://doi.org/10.3390/jmmp10010014
Yu Q, Zhang L, Wan T, Tang D, Zhang Y, Wu Z, Zhong F, Le S, Hu Y, Yu H. Effect of Casting Speed on Solidification Behavior and Porosity Defects in Low-Oxygen Copper Casting Rods Using SCR Technology. Journal of Manufacturing and Materials Processing. 2026; 10(1):14. https://doi.org/10.3390/jmmp10010014
Chicago/Turabian StyleYu, Qi, Lei Zhang, Tao Wan, Delin Tang, Yong Zhang, Zhiyong Wu, Fangyou Zhong, Shuncong Le, Yang Hu, and Hailiang Yu. 2026. "Effect of Casting Speed on Solidification Behavior and Porosity Defects in Low-Oxygen Copper Casting Rods Using SCR Technology" Journal of Manufacturing and Materials Processing 10, no. 1: 14. https://doi.org/10.3390/jmmp10010014
APA StyleYu, Q., Zhang, L., Wan, T., Tang, D., Zhang, Y., Wu, Z., Zhong, F., Le, S., Hu, Y., & Yu, H. (2026). Effect of Casting Speed on Solidification Behavior and Porosity Defects in Low-Oxygen Copper Casting Rods Using SCR Technology. Journal of Manufacturing and Materials Processing, 10(1), 14. https://doi.org/10.3390/jmmp10010014

