Fault-Tolerant-Based Neural Network ESO Adaptive Sliding Mode Tracking Control for QUAVs Used in Education and Teaching Under Disturbances
Abstract
1. Introduction
- A projection operator enforces preset bounds on Fault Factor estimates during adaptive updates, preventing unbounded drift from disturbances while enabling autonomous fault selection and dynamic compensation.
- For QUAV formations under simultaneous disturbances and actuator faults, we integrate a fault-tolerant neural network extended state observer (NNESO). Unlike conventional observers, this model-free solution requires only system order information, demonstrating enhanced robustness and applicability to nonlinear systems with actuation failures.
- Through synergistic integration of sliding mode control (SMC), inverse kinematics, and cooperative formation algorithms, we achieve trajectory tracking for disturbed/faulty QUAV clusters. Lyapunov-based analysis proves globally bounded states and uniform ultimate convergence of tracking errors to a bounded neighborhood of origin.
- Notations: For a matrix A, denotes its Euclidean norm. The notation indicates that A is positive definite. Let represent the identity matrix with size i. ⊗ is the Kronecker product. The i-th order time derivative of a function is expressed as , where .
2. Problem Formulation and Preliminaries
2.1. Graph Theory and Communication Topology
2.2. Modeling of the QUAVs System Used in Education and Teaching
- 1.
- A -continuous positive definite Lyapunov function .
- 2.
- Constants , .
- 3.
- Class functions .
3. Adaptive FTC Scheme Designs
3.1. Formation System Position Loop Errors Transformation
3.2. Integrated Design of SMC Scheme and Designs of the Fault-Tolerant-Based NNESO
3.3. Design of the Adaptive Fault Observer
- Maintaining via compact convex set projection;
- Governing adaptation law with .
4. Stability Analysis
5. Simulation Results
- Estimated values during LOE faults;
- Nominal value under fault-free conditions.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hao, J.-X.; Chen, L.; Meng, L. Advancing Large Language Models with Enhanced Retrieval-Augmented Generation: Evidence from Biological UAV Swarm Control. Drones 2025, 9, 361. [Google Scholar] [CrossRef]
- Chen, B.; Lin, B.; Li, M.; Li, Z.; Zhang, X.; Shi, M.; Qin, K. Event-Triggered-Based Neuroadaptive Bipartite Containment Tracking for Networked Unmanned Aerial Vehicles. Drones 2025, 9, 317. [Google Scholar] [CrossRef]
- Wen, G.; Song, Y.; Li, Z.; Li, B. Optimized Leader-Follower Consensus Control of Multi-QUAV Attitude System Using Reinforcement Learning and Backstepping. IEEE Trans. Emerg. Top. Comput. Intell. 2025, 9, 1469–1479. [Google Scholar] [CrossRef]
- Ren, W.; Zhou, Y.; Lu, M.; Gao, Y.; Gao, L.; Wang, Y. Fixed-time Backstepping Control of QUAV Based on Prescribed Performance. In Proceedings of the IEEE 39th Youth Academic Annual Conference of Chinese Association of Automation, Dalian, China, 7–9 June 2024; pp. 739–744. [Google Scholar]
- Lan, T.; Song, J.; Hou, Z.W.; Chen, K.; He, S.P.; Wang, H.; Liu, J.J.R. Event-Triggered Fixed-Time Sliding Mode Control for Lip-Reading-Driven UAV: Disturbance Rejection Using Wind Field Optimization. IEEE Trans. Autom. Sci. Eng. 2025, 22, 9090–9103. [Google Scholar] [CrossRef]
- Ahmed, N.; Alrasheedi, N. Commanded Filter-Based Robust Model Reference Adaptive Control for Quadrotor UAV with State Estimation Subject to Disturbances. Drones 2025, 9, 181. [Google Scholar] [CrossRef]
- Yu, D.X.; Ma, S.Z.; Wang, Z.; Liu, Y.J.; Chen, C.L.P. Fixed-Time Attitude Control for QUAV With Stochastic Disturbances: Theory and Experiment. IEEE Trans. Ind. Electron. 2024, 71, 16484–16492. [Google Scholar] [CrossRef]
- Rauf, A.; Rehman, A.U.; Khan, A.; Abbasi, W.; Ullah, K. Continuous finite-time integral sliding mode control of robotic manipulator with input deadzone and disturbance/uncertainty compensation. Trans. Inst. Meas. Control 2025. [Google Scholar] [CrossRef]
- Rauf, A.; Rehman, A.U.; Khan, A.; Abbasi, W.; Ullah, K. Adaptive control of robotic manipulator with input deadzone and disturbances/uncertainties. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2024, 238, 8330–8338. [Google Scholar] [CrossRef]
- Huang, T.; Liu, K.; Yang, Y.; Wen, C.-Y.; Huang, X. Disturbance-Observer-Based Fixed-Time Backstepping Control for Quadrotors with Input Saturation and Actuator Failure. Drones 2025, 9, 67. [Google Scholar] [CrossRef]
- Zhu, G.C.; Luo, M.; Cui, G.Z.; Li, Z. Dynamic event-triggered predefined-time adaptive attitude control for a QUAV with unknown deception attacks. Appl. Math. Comput. 2025, 485, 129003. [Google Scholar] [CrossRef]
- Ma, H.; Chen, M.; Feng, G.; Wu, Q. Disturbance-observer-based adaptive fuzzy tracking control for unmanned autonomous helicopter with flight boundary constraints. IEEE Trans. Fuzzy Syst. 2024, 31, 184–198. [Google Scholar] [CrossRef]
- Song, X.; Shen, L.H.; Chen, F.Y. Adaptive position control using backstepping technique for the leader-follower multiple quadrotor unmanned aerial vehicle formation. Int. J. Adapt. Control Signal Process. 2024, 38, 3121–3133. [Google Scholar] [CrossRef]
- Guo, H.Z.; Chen, M.; Shen, Y.H.; Lungu, M. Distributed Event-Triggered Collision Avoidance Formation Control for QUAVs With Disturbances Based on Virtual Tubes. IEEE Trans. Ind. Electron. 2025, 72, 1892–1903. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, R.; Qu, B.; Wei, T.; Chai, X.; Yan, L. Research on multiple quadrotor UAV formation obstacle avoidance based on finite-time consensus. Aeronaut. J. 2024, 2024, 12–13. [Google Scholar] [CrossRef]
- Chang, S.P.; Wang, Y.J.; Zuo, Z.Q. Fixed-time formation-containment control for uncertain multi- agent systems with varying gain extended state observer. Inf. Sci. 2022, 612, 759–779. [Google Scholar] [CrossRef]
- She, X.H.; Li, X.M.; Yao, D.Y.; Li, H.Y.; Lu, R.Q. Vision-based adaptive fixed-time uncooperative target tracking for QUAV with unknown disturbances. J. Frankl. Inst. 2023, 360, 12394–12414. [Google Scholar] [CrossRef]
- Wu, X.L.; Fei, W.B.; Wu, X.J.; Zhen, R. Fixed-time neuroadaptive practical tracking control based on extended state/disturbance observer for a QUAV with external disturbances and time-varying parameters. J. Frankl. Inst. 2022, 359, 3466–3491. [Google Scholar] [CrossRef]
- Wang, F.; Ma, Z.G.; Zhou, C.; Zhang, Z.; Hua, C.C.; Zong, Q. Fixed-Time Controller Design for a Quadrotor UAV with Asymmetric Output Error Constraints. J. Syst. Sci. Complex. 2023, 36, 1981–2000. [Google Scholar] [CrossRef]
- Muthusamy, P.K.; Garratt, M.; Pota, H.; Muthusamy, R. Real-Time Adaptive Intelligent Control System for Quadcopter Unmanned Aerial Vehicles With Payload Uncertainties. IEEE Trans. Ind. Electron. 2022, 69, 1641–1653. [Google Scholar] [CrossRef]
- Bettayeb, M.; Al-Saggaf, U.M.; Djennoune, S. High gain observer design for fractional-order non-linear systems with delayed measurements: Application to synchronisation of fractional-order chaotic systems. IET Control Theory Appl. 2017, 11, 3171–3178. [Google Scholar] [CrossRef]
- Cui, G.Z.; Zhu, G.C.; Gu, J.P.; Ma, Q.; Xu, S.Y. Observer-Based Predefined-Time Adaptive Fuzzy Prescribed Performance Tracking Control for a QUAV. IEEE Trans. Fuzzy Syst. 2025, 33, 789–798. [Google Scholar] [CrossRef]
- Wang, H.B.; Shi, S.; Zhen, Z.Y. Disturbance observer based fixed-time tracking control for unmanned aerial. J. Frankl. Inst. Eng. Appl. Math. 2024, 361, 107184. [Google Scholar] [CrossRef]
- Liu, L.; Liu, J.J.; Li, J.F.; Ji, Y.H.; Song, Y.; Xu, L.; Niu, W.X. Fault-Tolerant Control for Quadrotor Based on Fixed-Time ESO. Mathematics 2022, 10, 4386. [Google Scholar] [CrossRef]
- Li, X.; Qi, G.Y.; Guo, X.T.; Chen, Z.Q.; Zhao, X. Improved high order differential feedback control of quadrotor UAV based on improved extended state observer. J. Frankl. Inst. 2022, 359, 4233–4259. [Google Scholar] [CrossRef]
- Cao, C.Y.; Wei, C.S.; Liao, Y.X.; Li, J.; Luo, S.B. ESO-based Trajectory Tracking Control for Quadrotor UAV with Prescribed Performance. In Proceedings of the 39th Chinese Control Conference, Shenyang, China, 27–29 July 2020; pp. 6904–6910. [Google Scholar]
- Wu, X.J.; Han, X.R.; Zhen, R.; Shao, S.K. Appointed-Time Prescribed Performance Fault Tolerant Control for QUAV with Actuator Fault and Model Parameters Uncertainties. IEEE Access 2022, 10, 132917–132930. [Google Scholar] [CrossRef]
- Di, W.Y.; Li, Z.G.; Lv, D.Y.; Gao, C.; Yang, Y.H.; Zhou, X. Adaptive finite time fault tolerant control for the quadrotor unmanned aerial vehicles based on time-triggered strategy. Optim. Control Appl. Methods 2022, 44, 66–80. [Google Scholar] [CrossRef]
- Li, F.Z.; Liu, Z.; Jiang, B.P. Adaptive Finite-Time Fuzzy Fractional Sliding Mode Control for Uncertain QUAV With Actuator Faults and Slung Load. IEEE Trans. Aerosp. Electron. Syst. 2022, 61, 3046–3058. [Google Scholar] [CrossRef]
- Shi, P.C.; Wang, X.Q.; Meng, X.; He, M.Z.; Mao, Y.; Wang, Z. Adaptive Fault-Tolerant Control for Open-Circuit Faults in Dual Three-Phase PMSM Drives. IEEE Trans. Power Electron. 2023, 38, 3676–3688. [Google Scholar] [CrossRef]
- Du, D.; Li, Z.T. Research on weakly conservative passive fault-tolerant control method considering the fault distribution. Eng. Sci. Technol. Int. J. JESTECH 2025, 61, 101948. [Google Scholar] [CrossRef]
- Li, Y.; Wen, C.Y.; Liu, X.X.; Zhang, W.G.; Zheng, Y.S. Prescribed-Time Fault-Tolerant Flight Control for Aircraft Subject to Structural Damage. IEEE Trans. Aerosp. Electron. Syst. 2025, 61, 1848–1859. [Google Scholar] [CrossRef]
- Guo, H.R.; Wang, Y.; Peng, Y.R.; Li, S.C.; Zhang, H.B.; Zhao, Q.J. A Novel Engine Fault-Tolerant Control Method Based on Input Scheduling for Tiltrotor Aircraft. Int. J. Aeronaut. Space Sci. 2025, 26, 1035–1049. [Google Scholar] [CrossRef]
- Yan, K.; Chen, M.; Jiang, B.; Wu, Q.X. Robust adaptive active fault-tolerant control of UAH with unknown disturbances and actuator faults. Int. J. Adapt. Control Signal Process. 2019, 33, 684–711. [Google Scholar] [CrossRef]
- Buzhinsky, I.; Pakonen, A. Symmetry Breaking in Model Checking of Fault-Tolerant Nuclear Instrumentation and Control Systems. IEEE Access 2020, 8, 197684–197694. [Google Scholar] [CrossRef]
- Ren, Y.; Sun, Y.B.; Liu, L. Fuzzy Disturbance Observers-Based Adaptive Fault-Tolerant Control for an Uncertain Constrained Automatic Flexible Robotic Manipulator. IEEE Trans. Fuzzy Syst. 2024, 32, 1144–1158. [Google Scholar] [CrossRef]
- Bowen, C.; Boxian, L.; Meng, L.; Zhiqiang, L.; Xinyu, Z.; Mengji, S. Kaiyu, Q. Adaptive Reinforcement Learning for Fault-Tolerant Optimal Consensus Control of Nonlinear Canonical Multiagent Systems With Actuator Loss of Effectiveness. IEEE Syst. J. 2024, 18, 739–744. [Google Scholar]
Symbol | Value | Unit |
---|---|---|
m | k | |
g | m/s2 | |
l | m | |
kg · m2 |
Symbol | Value | Symbol | Value |
---|---|---|---|
1 | |||
1 | |||
1 | l |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Liu, Y.; Si, P.; Ma, H.; Wang, H. Fault-Tolerant-Based Neural Network ESO Adaptive Sliding Mode Tracking Control for QUAVs Used in Education and Teaching Under Disturbances. Drones 2025, 9, 630. https://doi.org/10.3390/drones9090630
Zhang Z, Liu Y, Si P, Ma H, Wang H. Fault-Tolerant-Based Neural Network ESO Adaptive Sliding Mode Tracking Control for QUAVs Used in Education and Teaching Under Disturbances. Drones. 2025; 9(9):630. https://doi.org/10.3390/drones9090630
Chicago/Turabian StyleZhang, Ziyang, Yang Liu, Pengju Si, Haoxiang Ma, and Huan Wang. 2025. "Fault-Tolerant-Based Neural Network ESO Adaptive Sliding Mode Tracking Control for QUAVs Used in Education and Teaching Under Disturbances" Drones 9, no. 9: 630. https://doi.org/10.3390/drones9090630
APA StyleZhang, Z., Liu, Y., Si, P., Ma, H., & Wang, H. (2025). Fault-Tolerant-Based Neural Network ESO Adaptive Sliding Mode Tracking Control for QUAVs Used in Education and Teaching Under Disturbances. Drones, 9(9), 630. https://doi.org/10.3390/drones9090630