Drones and AI-Driven Solutions for Wildlife Monitoring
Abstract
1. Introduction
1.1. Comparison with Existing Reviews
1.2. Motivation and Contribution
- Methodologies and applications, exploring operational frameworks, AI techniques, and practical implementations across diverse wildlife research domains, including species identification, animal tracking, movement analysis, anti-poaching, population estimation, and habitat assessment.
- Challenges and opportunities, highlighting current limitations and the unexploited potential in the synergy between drones and AI in wildlife monitoring as well as outlining promising research directions.
1.3. Review Organization
2. Materials and Methods
2.1. Literature Search Process
2.2. Topic Categorization
- W1: Automatic species identification.
- W2: Tracking and movement analysis.
- W3: Anti-poaching and surveillance.
- W4: Population estimation.
- W5. Habitat analysis.
3. Background
3.1. UAV Platforms
3.2. Onboard Instrumentation
3.3. Drones’ Companion Computing Support
3.4. Machine Learning and Deep Learning Algorithms
4. Drones and AI-Driven Solutions in Wildlife Monitoring
- Automatic species identification.
- Tracking and movement analysis.
- Anti-poaching and surveillance.
- Population estimation.
- Habitat analysis.
4.1. Automated Species Identification
4.2. Tracking and Behavioral Analysis
4.3. Surveilance and Anti-Poaching
4.4. Population Estimation
4.5. Habitat Analysis
5. Discussion
6. Limitations and Future Directions
6.1. Technical Limitations
6.2. Legal Restrictions, Certification, and Costs
6.3. Future Directions
7. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ACO | Ant Colony Optimization |
AOS | Airborne Optical Sectioning |
CC | Companion Computer |
CNN | Convolutional Neural Network |
DL | Deep Learning |
DNN | Deep Neural Network |
ENVI | Environment for Visualizing Images |
GAN | Generative Adversarial Network |
GIS | Geographic Information System |
GPS | Global Positioning System |
GSM | Global System for Mobile Network Communication |
LiDAR | Light Detection and Ranging |
LoRaWAN | Long-Range Wide-Area Network |
ML | Machine Learning |
PSO | Particle Swarm Optimization |
R-CNN | Region-based Convolutional Neural Networks |
RGB | Red, Green, and Blue |
RL | Reinforcement Learning |
RNN | Recurrent Neural Network |
ROV | Remotely Operated Vehicle |
RTK-GNSS | Real-Time Kinematic Global Navigation Satellite System |
UAV | Unmanned Aerial Vehicle |
VHF | Very High Frequency |
VTOL | Vertical Take off and Landing |
WSN | Wireless Sensor Network |
XAI | Explainable artificial Intelligence |
YOLO | You Only Look Once |
References
- Abrahms, B.; Carter, N.H.; Clark-Wolf, T.J.; Gaynor, K.M.; Johansson, E.; McInturff, A.; Nisi, A.C.; Rafiq, K.; West, L. Climate Change as a Global Amplifier of Human–Wildlife Conflict. Nat. Clim. Chang. 2023, 13, 224–234. [Google Scholar] [CrossRef]
- Lahoz-Monfort, J.J.; Magrath, M.J.L. A Comprehensive Overview of Technologies for Species and Habitat Monitoring and Conservation. BioScience 2021, 71, 1038–1062. [Google Scholar] [CrossRef]
- Sparrow, B.D.; Edwards, W.; Munroe, S.E.M.; Wardle, G.M.; Guerin, G.R.; Bastin, J.-F.; Morris, B.; Christensen, R.; Phinn, S.; Lowe, A.J. Effective Ecosystem Monitoring Requires a Multi-Scaled Approach. Biol. Rev. 2020, 95, 1706–1719. [Google Scholar] [CrossRef]
- López, J.J.; Mulero-Pázmány, M. Drones for Conservation in Protected Areas: Present and Future. Drones 2019, 3, 10. [Google Scholar] [CrossRef]
- Farley, S.S.; Dawson, A.; Goring, S.J.; Williams, J.W. Situating Ecology as a Big-Data Science: Current Advances, Challenges, and Solutions. Bioscience 2018, 68, 563–576. [Google Scholar] [CrossRef]
- Tuia, D.; Kellenberger, B.; Beery, S.; Costelloe, B.R.; Zuffi, S.; Risse, B.; Mathis, A.; Mathis, M.W.; van Langevelde, F.; Burghardt, T.; et al. Perspectives in Machine Learning for Wildlife Conservation. Nat. Commun. 2022, 13, 792. [Google Scholar] [CrossRef]
- Corcoran, E.; Winsen, M.; Sudholz, A.; Hamilton, G. Automated Detection of Wildlife Using Drones: Synthesis, Opportunities and Constraints. Methods Ecol. Evol. 2021, 12, 1103–1114. [Google Scholar] [CrossRef]
- Kumar, D.; Jakhar, S.D. Artificial Intelligence in Animal Surveillance and Conservation. In Impact of Artificial Intelligence on Organizational Transformation; Scrivener Publishing: Austin, TX, USA, 2022; pp. 73–85. [Google Scholar] [CrossRef]
- Saoud, L.S.; Sultan, A.; Elmezain, M.; Heshmat, M.; Seneviratne, L.; Hussain, I. Beyond Observation: Deep Learning for Animal Behavior and Ecological Conservation. Ecol. Inform. 2024, 84, 102893. [Google Scholar] [CrossRef]
- Yousefi, D.B.M.; Rafie, A.S.M.; Al-Haddad, S.A.R.; Azrad, S. A Systematic Literature Review on the Use of Deep Learning in Precision Livestock Detection and Localization Using Unmanned Aerial Vehicles. IEEE Access 2022, 10, 80071–80091. [Google Scholar] [CrossRef]
- Axford, D.; Sohel, F.; Vanderklift, M.A.; Hodgson, A.J. Collectively Advancing Deep Learning for Animal Detection in Drone Imagery: Successes, Challenges, and Research Gaps. Ecol. Inform. 2024, 83, 102842. [Google Scholar] [CrossRef]
- Ivanova, S.; Prosekov, A.; Kaledin, A. A Survey on Monitoring of Wild Animals during Fires Using Drones. Fire 2022, 5, 60. [Google Scholar] [CrossRef]
- Buchelt, A.; Adrowitzer, A.; Kieseberg, P.; Gollob, C.; Nothdurft, A.; Eresheim, S.; Tschiatschek, S.; Stampfer, K.; Holzinger, A. Exploring Artificial Intelligence for Applications of Drones in Forest Ecology and Management. For. Ecol. Manag. 2024, 551, 121530. [Google Scholar] [CrossRef]
- Pedrazzi, L.; Naik, H.; Sandbrook, C.; Lurgi, M.; Fürtbauer, I.; King, A.J. Advancing Animal Behaviour Research Using Drone Technology. Anim. Behav. 2025, 222, 123147. [Google Scholar] [CrossRef]
- Mo, M.; Bonatakis, K. An Examination of Trends in the Growing Scientific Literature on Approaching Wildlife with Drones. Drone Syst. Appl. 2022, 10, 111–139. [Google Scholar] [CrossRef]
- Afridi, S.; Laporte-Devylder, L.; Maalouf, G.; Kline, J.M.; Penny, S.G.; Hlebowicz, K.; Cawthorne, D.; Lundquist, U.P.S. Impact of Drone Disturbances on Wildlife: A Review. Drones 2025, 9, 311. [Google Scholar] [CrossRef]
- Fergus, P.; Chalmers, C.; Longmore, S.; Wich, S. Harnessing Artificial Intelligence for Wildlife Conservation. Conservation 2024, 4, 685–702. [Google Scholar] [CrossRef]
- Reynolds, S.A.; Beery, S.; Burgess, N.; Burgman, M.; Butchart, S.H.M.; Cooke, S.J.; Coomes, D.; Danielsen, F.; Di Minin, E.; Durán, A.P.; et al. The Potential for AI to Revolutionize Conservation: A Horizon Scan. Trends Ecol. Evol. 2025, 40, 191–207. [Google Scholar] [CrossRef]
- Kumarasan, T.; Vinoth, M.; Durgaram, M.; Benedict, M. Drone-enable wildlife monitoring system: Revolutionizing conservation efforst. NeuroQuantology 2023, 18, 330–339. [Google Scholar] [CrossRef]
- Duffy, J.P.; Cunliffe, A.M.; DeBell, L.; Sandbrook, C.; Wich, S.A.; Shutler, J.D.; Myers-Smith, I.H.; Varela, M.R.; Anderson, K.; James Duffy, C.P. Location, Location, Location: Considerations When Using Lightweight Drones in Challenging Environments. Interdiscip. Perspect. Remote Sens. Ecol. Conserv. 2018, 4, 7–19. [Google Scholar] [CrossRef]
- Mo, M.; Bonatakis, K. Approaching Wildlife with Drones: Using Scientific Literature to Identify Factors to Consider for Minimising Disturbance. Aust. Zool. 2022, 42, 1–29. [Google Scholar] [CrossRef]
- Perz, R.; Wronowski, K.; Domanski, R.; Dąbrowski, I. Case Study of Detection and Monitoring of Wildlife by UAVs Equipped with RGB Camera and TIR Camera. Aircr. Eng. Aerosp. Technol. 2023, 95, 1461–1469. [Google Scholar] [CrossRef]
- Rietz, J.; van Beeck Calkoen, S.T.S.; Ferry, N.; Schlüter, J.; Wehner, H.; Schindlatz, K.-H.; Lackner, T.; von Hoermann, C.; Conraths, F.J.; Müller, J.; et al. Drone-Based Thermal Imaging in the Detection of Wildlife Carcasses and Disease Management. Transbound. Emerg. Dis. 2023, 2023, 5517000. [Google Scholar] [CrossRef] [PubMed]
- McCraine, D.; Samiappan, S.; Kohler, L.; Sullivan, T.; Will, D.J. Automated Hyperspectral Feature Selection and Classification of Wildlife Using Uncrewed Aerial Vehicles. Remote Sens. 2024, 16, 406. [Google Scholar] [CrossRef]
- Luan, K.; Zhao, X.; Kong, W.; Chen, T.; Xie, H.; Liu, X.; Wang, F. A Novel Ray Tracing Approach for Bathymetry Using UAV-Based Dual-Polarization Photon-Counting LiDAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 20284–20303. [Google Scholar] [CrossRef]
- Michez, A.; Broset, S.; Lejeune, P. Ears in the Sky: Potential of Drones for the Bioacoustic Monitoring of Birds and Bats. Drones 2021, 5, 9. [Google Scholar] [CrossRef]
- Hui, N.T.; Lo, E.K.; Moss, J.B.; Gerber, G.P.; Welch, M.E.; Kastner, R.; Schurgers, C. A More Precise Way to Localize Animals Using Drones. J. Field Robot. 2021, 38, 917–928. [Google Scholar] [CrossRef]
- Burgués, J.; Marco, S. Environmental Chemical Sensing Using Small Drones: A Review. Sci. Total Environ. 2020, 748, 141172. [Google Scholar] [CrossRef] [PubMed]
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine Learning and Deep Learning. Electron Mark. 2021, 31, 685–695. [Google Scholar] [CrossRef]
- Bau, D.; Zhu, J.Y.; Strobelt, H.; Zhou, B.; Tenenbaum, J.B.; Freeman, W.T.; Torralba, A. GAN Dissection: Visualizing and Understanding Generative Adversarial Networks. In Proceedings of the 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Zhou, M.; Elmore, J.A.; Samiappan, S.; Evans, K.O.; Pfeiffer, M.B.; Blackwell, B.F.; Iglay, R.B. Improving Animal Monitoring Using Small Unmanned Aircraft Systems (SUAS) and Deep Learning Networks. Sensors 2021, 21, 5697. [Google Scholar] [CrossRef]
- Graving, J.M.; Chae, D.; Naik, H.; Li, L.; Koger, B.; Costelloe, B.R.; Couzin, I.D. DeepPoseKit, a Software Toolkit for Fast and Robust Animal Pose Estimation Using Deep Learning. eLife 2019, 8, e47994. [Google Scholar] [CrossRef]
- Mou, C.; Liu, T.; Zhu, C.; Cui, X. WAID: A Large-Scale Dataset for Wildlife Detection with Drones. Appl. Sci. 2023, 13, 10397. [Google Scholar] [CrossRef]
- Mou, C.; Zhu, C.; Liu, T.; Cui, X. A Novel Efficient Wildlife Detecting Method with Lightweight Deployment on UAVs Based on YOLOv7. IET Image Process 2024, 18, 1296–1314. [Google Scholar] [CrossRef]
- He, A.; Li, X.; Wu, X.; Su, C.; Chen, J.; Xu, S.; Guo, X. ALSS-YOLO: An Adaptive Lightweight Channel Split and Shuffling Network for TIR Wildlife Detection in UAV Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 17308–17326. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, Z. CE-RetinaNet: A Channel Enhancement Method for Infrared Wildlife Detection in UAV Images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–12. [Google Scholar] [CrossRef]
- Du, J. Understanding of Object Detection Based on CNN Family and YOLO. J. Phys. Conf. Ser. 2018, 1004, 012029. [Google Scholar] [CrossRef]
- Werber, Y.; Sextin, H.; Yovel, Y.; Sapir, N. BATScan: A Radar Classification Tool Reveals Large-Scale Bat Migration Patterns. Methods Ecol. Evol. 2023, 14, 1764–1779. [Google Scholar] [CrossRef]
- Petso, T.; Jamisola, R.S.; Mpoeleng, D. Review on Methods Used for Wildlife Species and Individual Identification. Eur. J. Wildl. Res. 2022, 68, 3. [Google Scholar] [CrossRef]
- Lenzi, J.; Barnas, A.F.; ElSaid, A.A.; Desell, T.; Rockwell, R.F.; Ellis-Felege, S.N. Artificial Intelligence for Automated Detection of Large Mammals Creates Path to Upscale Drone Surveys. Sci. Rep. 2023, 13, 947. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Sultana, M.; Das, B.; Roy, B. A Deep Neural Network Framework for Detection and Identification of Bengal Tigers. Innov. Syst. Softw. Eng. 2024, 20, 151–159. [Google Scholar] [CrossRef]
- Rančić, K.; Blagojević, B.; Bezdan, A.; Ivošević, B.; Tubić, B.; Vranešević, M.; Pejak, B.; Crnojević, V.; Marko, O. Animal Detection and Counting from UAV Images Using Convolutional Neural Networks. Drones 2023, 7, 179. [Google Scholar] [CrossRef]
- Mücher, C.A.; Los, S.; Franke, G.J.; Kamphuis, C. Detection, Identification and Posture Recognition of Cattle with Satellites, Aerial Photography and UAVs Using Deep Learning Techniques. Int. J. Remote Sens. 2022, 43, 2377–2392. [Google Scholar] [CrossRef]
- Petso, T.; Jamisola, R.S.; Mpoeleng, D.; Bennitt, E.; Mmereki, W. Automatic Animal Identification from Drone Camera Based on Point Pattern Analysis of Herd Behaviour. Ecol. Inform. 2021, 66, 101485. [Google Scholar] [CrossRef]
- Kellenberger, B.; Marcos, D.; Lobry, S.; Tuia, D. Half a Percent of Labels Is Enough: Efficient Animal Detection in UAV Imagery Using Deep CNNs and Active Learning. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9524–9533. [Google Scholar] [CrossRef]
- Rahman, D.A.; Sitorus, A.B.Y.; Condro, A.A. From Coastal to Montane Forest Ecosystems, Using Drones for Multi-Species Research in the Tropics. Drones 2021, 6, 6. [Google Scholar] [CrossRef]
- Krishnan, B.S.; Jones, L.R.; Elmore, J.A.; Samiappan, S.; Evans, K.O.; Pfeiffer, M.B.; Blackwell, B.F.; Iglay, R.B. Fusion of Visible and Thermal Images Improves Automated Detection and Classification of Animals for Drone Surveys. Sci. Rep. 2023, 13, 10385. [Google Scholar] [CrossRef]
- Lee, S.; Song, Y.; Kil, S.-H. Feasibility Analyses of Real-Time Detection of Wildlife Using UAV-Derived Thermal and RGB Images. Remote Sens. 2021, 13, 2169. [Google Scholar] [CrossRef]
- Corcoran, E.; Denman, S.; Hanger, J.; Wilson, B.; Hamilton, G. Automated Detection of Koalas Using Low-Level Aerial Surveillance and Machine Learning. Sci. Rep. 2019, 9, 3208. [Google Scholar] [CrossRef]
- Hamilton, G.; Corcoran, E.; Denman, S.; Hennekam, M.E.; Koh, L.P. When You Can’t See the Koalas for the Trees: Using Drones and Machine Learning in Complex Environments. Biol. Conserv. 2020, 247, 108598. [Google Scholar] [CrossRef]
- Povlsen, P.; Bruhn, D.; Durdevic, P.; Arroyo, D.; Pertoldi, C. Using YOLO Object Detection to Identify Hare and Roe Deer in Thermal Aerial Video Footage—Possible Future Applications in Real-Time Automatic Drone Surveillance and Wildlife Monitoring. Drones 2023, 8, 2. [Google Scholar] [CrossRef]
- Dujon, A.M.; Ierodiaconou, D.; Geeson, J.J.; Arnould, J.P.Y.; Allan, B.M.; Katselidis, K.A.; Schofield, G. Machine Learning to Detect Marine Animals in UAV Imagery: Effect of Morphology, Spacing, Behaviour and Habitat. Remote Sens. Ecol. Conserv. 2021, 7, 341–354. [Google Scholar] [CrossRef]
- Mpouziotas, D.; Karvelis, P.; Tsoulos, I.; Stylios, C. Automated Wildlife Bird Detection from Drone Footage Using Computer Vision Techniques. Appl. Sci. 2023, 13, 7787. [Google Scholar] [CrossRef]
- Backman, K.; Wood, J.; Brandimarti, M.; Beranek, C.T.; Roff, A. Human Inspired Deep Learning to Locate and Classify Terrestrial and Arboreal Animals in Thermal Drone Surveys. Methods Ecol. Evol. 2025, 16, 1239–1254. [Google Scholar] [CrossRef]
- Jin, T.; Si, X.; Liu, J.; Ding, P. An Integrated Animal Tracking Technology Combining a GPS Tracking System with a UAV. Methods Ecol. Evol. 2023, 14, 505–511. [Google Scholar] [CrossRef]
- Quamar, M.M.; Al-Ramadan, B.; Khan, K.; Shafiullah, M.; El Ferik, S. Advancements and Applications of Drone-Integrated Geographic Information System Technology—A Review. Remote Sens. 2023, 15, 5039. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, Y.; Fu, P.; Luo, W.; Shao, Q.; Zhang, T.; Yu, Z. A Reliable Unmanned Aerial Vehicle Multi-Target Tracking System with Global Motion Compensation for Monitoring Procapra Przewalskii. Ecol. Inform. 2024, 81, 102556. [Google Scholar] [CrossRef]
- Lentink, D.; Walter, T.; Couzin, I.D. TRex, a Fast Multi-Animal Tracking System with Markerless Identification, and 2D Estimation of Posture and Visual Fields. eLife 2021, 10, e64000. [Google Scholar] [CrossRef]
- Van Nguyen, H.; Chesser, M.; Koh, L.P.; Rezatofighi, S.H.; Ranasinghe, D.C. TrackerBots: Autonomous Unmanned Aerial Vehicle for Real-Time Localization and Tracking of Multiple Radio-Tagged Animals. J. Field Robot. 2019, 36, 617–635. [Google Scholar] [CrossRef]
- Shafer, M.W.; Vega, G.; Rothfus, K.; Flikkema, P. UAV Wildlife Radiotelemetry: System and Methods of Localization. Methods Ecol. Evol. 2019, 10, 1783–1795. [Google Scholar] [CrossRef]
- Mohammadi, M.; Shafer, M.W. UAV Path Planning for Precision Multi-Target Localization. IEEE Access 2025, 13, 63715–63728. [Google Scholar] [CrossRef]
- Kabir, R.H.; Lee, K. Wildlife Monitoring Using a Multi-UAV System with Optimal Transport Theory. Appl. Sci. 2021, 11, 4070. [Google Scholar] [CrossRef]
- Kavwele, C.M.; Hopcraft, J.G.C.; Davy, D.; Torney, C.J. Automated and Repeated Aerial Observations of GPS-Collared Animals Using UAVs and Open-Source Electronics. Ecosphere 2024, 15, e4841. [Google Scholar] [CrossRef]
- Koger, B.; Deshpande, A.; Kerby, J.T.; Graving, J.M.; Costelloe, B.R.; Couzin, I.D. Quantifying the Movement, Behaviour and Environmental Context of Group-Living Animals Using Drones and Computer Vision. J. Anim. Ecol. 2023, 92, 1357–1371. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Marufuzzaman, M.; Tunc, H.; Bian, L.; Bullington, W. A Modified Ant Colony Optimization Algorithm to Solve a Dynamic Traveling Salesman Problem: A Case Study with Drones for Wildlife Surveillance. J. Comput. Des. Eng. 2019, 6, 368–386. [Google Scholar] [CrossRef]
- Han, W.; Wang, J.; Wang, Y.; Xu, B. Multi-UAV Flocking Control With a Hierarchical Collective Behavior Pattern Inspired by Sheep. IEEE Trans. Aerosp. Electron. Syst. 2024, 60, 2267–2276. [Google Scholar] [CrossRef]
- Ergunsah, S.; Tümen, V.; Kosunalp, S.; Demir, K. Energy-Efficient Animal Tracking with Multi-Unmanned Aerial Vehicle Path Planning Using Reinforcement Learning and Wireless Sensor Networks. Concurr. Comput. 2023, 35, e7527. [Google Scholar] [CrossRef]
- Sangeetha, R.G.; Srivastava, Y.; Hemanth, C.; Naicker, H.S.; Kumar, A.P.; Vidhyadharan, S. Unmanned Aerial Surveillance and Tracking System in Forest Areas for Poachers and Wildlife. IEEE Access 2024, 12, 187572–187586. [Google Scholar] [CrossRef]
- Schedl, D.C.; Kurmi, I.; Bimber, O. Search and Rescue with Airborne Optical Sectioning. Nat. Mach. Intell. 2020, 2, 783–790. [Google Scholar] [CrossRef]
- Kurmi, I.; Schedl, D.C.; Bimber, O. Combined Person Classification with Airborne Optical Sectioning. Sci. Rep. 2022, 12, 3804. [Google Scholar] [CrossRef]
- Song, Z.; Yan, Y.; Cao, Y.; Jin, S.; Qi, F.; Li, Z.; Lei, T.; Chen, L.; Jing, Y.; Xia, J.; et al. An Infrared Dataset for Partially Occluded Person Detection in Complex Environment for Search and Rescue. Sci. Data 2025, 12, 300. [Google Scholar] [CrossRef]
- Hua, A.; Martin, K.; Shen, Y.; Chen, N.; Mou, C.; Sterk, M.; Reinhard, B.; Reinhard, F.F.; Lee, S.; Alibhai, S.; et al. Protecting Endangered Megafauna through AI Analysis of Drone Images in a Low-Connectivity Setting: A Case Study from Namibia. PeerJ 2022, 10, e13779. [Google Scholar] [CrossRef]
- Kerschner, R.; Nathan, R.J.A.A.; Mantiuk, R.K.; Bimber, O. Stereoscopic Depth Perception through Foliage. Sci. Rep. 2024, 14, 23056. [Google Scholar] [CrossRef] [PubMed]
- Madhasu, N.; Pande, S.D. Revolutionizing Wildlife Protection: A Novel Approach Combining Deep Learning and Night-Time Surveillance. Multimed. Tools Appl. 2024. [Google Scholar] [CrossRef]
- How Are INaturalist Data Used for Research? INaturalist Help. Available online: https://help.inaturalist.org/en/support/solutions/articles/151000170341-how-are-inaturalist-data-used-for-research- (accessed on 14 April 2025).
- Li, X.; Huang, H.; Savkin, A.V. A Novel Method for Protecting Swimmers and Surfers from Shark Attacks Using Communicating Autonomous Drones. IEEE Internet Things J. 2020, 7, 9884–9894. [Google Scholar] [CrossRef]
- Chalmers, C.; Fergus, P.; Aday Curbelo Montanez, C.; Longmore, S.N.; Wich, S.A. Video Analysis for the Detection of Animals Using Convolutional Neural Networks and Consumer-Grade Drones. J. Unmanned Veh. Syst. 2021, 9, 112–127. [Google Scholar] [CrossRef]
- Natarajan, B.; Elakkiya, R.; Bhuvaneswari, R.; Saleem, K.; Chaudhary, D.; Samsudeen, S.H. Creating Alert Messages Based on Wild Animal Activity Detection Using Hybrid Deep Neural Networks. IEEE Access 2023, 11, 67308–67321. [Google Scholar] [CrossRef]
- Amala Arokia Nathan, R.J.; Kurmi, I.; Bimber, O. Drone Swarm Strategy for the Detection and Tracking of Occluded Targets in Complex Environments. Commun. Eng. 2023, 2, 55. [Google Scholar] [CrossRef]
- Monzambe, G.; Valentine, L.; Skosana, X. Performance Evaluation of Unmanned Aerial Vehicles Usage in Wildlife Surveillance Operations Using Agent-Based Simulation Modeling. Procedia CIRP 2024, 128, 804–809. [Google Scholar] [CrossRef]
- Maier, G.; Albanese, A.; Ciavotta, M.; Ciulli, N.; Giordano, S.; Giusti, E.; Salvatore, A.; Schembra, G. WatchEDGE: Smart Networking for Distributed AI-Based Environmental Control. Comput. Netw. 2024, 243, 110248. [Google Scholar] [CrossRef]
- He, G.; Yan, X.; Zhang, X.; Guo, M.; Wang, J.; Wei, Q.; Shen, Y.; Wang, C.; Lei, Y.; Jin, X.; et al. Undertaking Wildlife Surveys with Unmanned Aerial Vehicles in Rugged Mountains with Dense Vegetation: A Tentative Model Using Sichuan Snub-Nosed Monkeys in China. Glob. Ecol. Conserv. 2023, 48, e02685. [Google Scholar] [CrossRef]
- Iglay, R.B.; Jones, L.R.; Elmore, J.A.; Evans, K.O.; Samiappan, S.; Pfeiffer, M.B.; Blackwell, B.F. Wildlife Monitoring with Drones: A Survey of End Users. Wildl. Soc. Bull. 2024, 48, e1533. [Google Scholar] [CrossRef]
- Hodgson, J.C.; Mott, R.; Baylis, S.M.; Pham, T.T.; Wotherspoon, S.; Kilpatrick, A.D.; Raja Segaran, R.; Reid, I.; Terauds, A.; Koh, L.P. Drones Count Wildlife More Accurately and Precisely than Humans. Methods Ecol. Evol. 2018, 9, 1160–1167. [Google Scholar] [CrossRef]
- Lyons, M.B.; Brandis, K.J.; Murray, N.J.; Wilshire, J.H.; McCann, J.A.; Kingsford, R.T.; Callaghan, C.T. Monitoring Large and Complex Wildlife Aggregations with Drones. Methods Ecol. Evol. 2019, 10, 1024–1035. [Google Scholar] [CrossRef]
- Francis, R.J.; Lyons, M.B.; Kingsford, R.T.; Brandis, K.J. Counting Mixed Breeding Aggregations of Animal Species Using Drones: Lessons from Waterbirds on Semi-Automation. Remote Sens. 2020, 12, 1185. [Google Scholar] [CrossRef]
- Marchowski, D. Drones, Automatic Counting Tools, and Artificial Neural Networks in Wildlife Population Censusing. Ecol. Evol. 2021, 11, 16214–16227. [Google Scholar] [CrossRef] [PubMed]
- Edwards, H.H.; Hostetler, J.A.; Stith, B.M.; Martin, J. Monitoring Abundance of Aggregated Animals (Florida Manatees) Using an Unmanned Aerial System (UAS). Sci. Rep. 2021, 11, 12920. [Google Scholar] [CrossRef]
- Infantes, E.; Carroll, D.; Silva, W.T.A.F.; Härkönen, T.; Edwards, S.V.; Harding, K.C. An Automated Work-Flow for Pinniped Surveys: A New Tool for Monitoring Population Dynamics. Front. Ecol. Evol. 2022, 10, 905309. [Google Scholar] [CrossRef]
- Chang, B.; Hwang, B.; Lim, W.; Kim, H.; Kang, W.; Park, Y.-S.; Ko, D.W. Enhancing Wildlife Detection Using Thermal Imaging Drones: Designing the Flight Path. Drones 2025, 9, 52. [Google Scholar] [CrossRef]
- Prosekov, A.; Vesnina, A.; Atuchin, V.; Kuznetsov, A. Robust Algorithms for Drone-Assisted Monitoring of Big Animals in Harsh Conditions of Siberian Winter Forests: Recovery of European Elk (Alces Alces) in Salair Mountains. Animals 2022, 12, 1483. [Google Scholar] [CrossRef]
- Pagacz, S.; Witczuk, J. Estimating Ground Surface Visibility on Thermal Images from Drone Wildlife Surveys in Forests. Ecol. Inform. 2023, 78, 102379. [Google Scholar] [CrossRef]
- Alanezi, M.A.; Shahriar, M.S.; Hasan, M.B.; Ahmed, S.; Sha’aban, Y.A.; Bouchekara, H.R.E.H. Livestock Management With Unmanned Aerial Vehicles: A Review. IEEE Access 2022, 10, 45001–45028. [Google Scholar] [CrossRef]
- De Vasconcellos, B.C.; Trindade, J.P.P.; Volk, L.B.d.S.; de Pinho, L.B. Method Applied To Animal MonitoringThrough VANT Images. IEEE Lat. Am. Trans. 2020, 18, 1280–1287. [Google Scholar] [CrossRef]
- Shao, W.; Kawakami, R.; Yoshihashi, R.; You, S.; Kawase, H.; Naemura, T. Cattle Detection and Counting in UAV Images Based on Convolutional Neural Networks. Int. J. Remote Sens. 2020, 41, 31–52. [Google Scholar] [CrossRef]
- Xu, B.; Wang, W.; Falzon, G.; Kwan, P.; Guo, L.; Chen, G.; Tait, A.; Schneider, D. Automated Cattle Counting Using Mask R-CNN in Quadcopter Vision System. Comput. Electron. Agric. 2020, 171, 105300. [Google Scholar] [CrossRef]
- Xu, B.; Wang, W.; Falzon, G.; Kwan, P.; Guo, L.; Sun, Z.; Li, C. Livestock Classification and Counting in Quadcopter Aerial Images Using Mask R-CNN. Int. J. Remote Sens. 2020, 41, 8121–8142. [Google Scholar] [CrossRef]
- Sarwar, F.; Griffin, A.; Rehman, S.U.; Pasang, T. Detecting Sheep in UAV Images. Comput. Electron. Agric. 2021, 187, 106219. [Google Scholar] [CrossRef]
- Zhu, P.; Peng, T.; Du, D.; Yu, H.; Zhang, L.; Hu, Q. Graph Regularized Flow Attention Network for Video Animal Counting from Drones. IEEE Trans. Image Process. 2021, 30, 5339–5351. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Meng, X.; Song, W.; Chen, Z. Electronic Sheepdog: A Novel Method in with UAV-Assisted Wearable Grazing Monitoring. IEEE Internet Things J. 2023, 10, 16036–16047. [Google Scholar] [CrossRef]
- Mangewa, L.J.; Ndakidemi, P.A.; Munishi, L.K. Integrating UAV Technology in an Ecological Monitoring System for Community Wildlife Management Areas in Tanzania. Sustainability 2019, 11, 6116. [Google Scholar] [CrossRef]
- Akyol, K. An Innovative Hybrid Method Utilizing Fused Transformer-Based Deep Features and Deep Neural Networks for Detecting Forest Fires. Adv. Space Res. 2025, 75, 8583–8598. [Google Scholar] [CrossRef]
- Melhim, L.K.B.; Jemmali, M.; Boulila, W.; Alazab, M.; Rani, S.; Campbell, H.; Amdouni, H. Leveraging Drone-Assisted Surveillance for Effective Forest Conservation: A Case Study in Australia’s Daintree Rainforest. IEEE Internet Things J. 2024, 11, 31167–31179. [Google Scholar] [CrossRef]
- Kuželka, K.; Surový, P. Automatic Detection and Quantification of Wild Game Crop Damage Using an Unmanned Aerial Vehicle (UAV) Equipped with an Optical Sensor Payload: A Case Study in Wheat. Eur. J. Remote Sens. 2018, 51, 241–250. [Google Scholar] [CrossRef]
- Ghazal, M.A.; Mahmoud, A.; Aslantas, A.; Soliman, A.; Shalaby, A.; Benediktsson, J.A.; El-Baz, A. Vegetation Cover Estimation Using Convolutional Neural Networks. IEEE Access 2019, 7, 132563–132576. [Google Scholar] [CrossRef]
- Mawardi, Z.; Gautam, D.; Whiteside, T.G. Utilization of Remote Sensing Dataset and a Deep Learning Object Detection Model to Map Siam Weed Infestations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 18939–18948. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, Z.; Ma, Y.; Sun, Y.; Du, Q.; Williams, P.; Drewry, J.; Luck, B. Multitask Learning of Alfalfa Nutritive Value From UAV-Based Hyperspectral Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Onishi, M.; Ise, T. Explainable Identification and Mapping of Trees Using UAV RGB Image and Deep Learning. Sci. Rep. 2021, 11, 903. [Google Scholar] [CrossRef]
- Lee, J.J. Minimizing Sensor Fusion Disruptions in UAV-Based Collaborative Remote Sensing for Wildlife Preservation. IEEE Sens. Lett. 2024, 8, 1–4. [Google Scholar] [CrossRef]
- Yaney-Keller, A.; McIntosh, R.R.; Clarke, R.H.; Reina, R.D. Closing the Air Gap: The Use of Drones for Studying Wildlife Ecophysiology. Biol. Rev. 2025, 100, 1206–1228. [Google Scholar] [CrossRef]
- Liu, X.; Ho, L.; Bruneel, S.; Goethals, P. Applications of Unmanned Vehicle Systems for Multi-Spatial Scale Monitoring and Management of Aquatic Ecosystems: A Review. Ecol. Inform. 2025, 85, 102926. [Google Scholar] [CrossRef]
- Ganie, P.A.; Khatei, A.; Posti, R.; Sidiq, M.J.; Pandey, P.K. Unmanned Aerial Vehicles in Fisheries and Aquaculture: A Comprehensive Overview. Environ. Monit. Assess. 2025, 197, 503. [Google Scholar] [CrossRef]
- Sundaram, N.; Meena, S.D. Integrated Animal Monitoring System with Animal Detection and Classification Capabilities: A Review on Image Modality, Techniques, Applications, and Challenges. Artif. Intell. Rev. 2023, 56, 1–51. [Google Scholar] [CrossRef]
- Schad, L.; Fischer, J. Opportunities and Risks in the Use of Drones for Studying Animal Behaviour. Methods Ecol. Evol. 2023, 14, 1864–1872. [Google Scholar] [CrossRef]
- Hays, G.C.; Taxonera, A.; Renom, B.; Fairweather, K.; Lopes, A.; Cozens, J.; Laloë, J.O. Changes in Mean Body Size in an Expanding Population of a Threatened Species. Proc. R. Soc. B 2022, 289, 20220696. [Google Scholar] [CrossRef]
- Puri, A. A Novel Wildlife Poaching Detection Solution Using Spatio-Temporal Data with Dynamic Time Warping. In Proceedings of the 2021 IEEE MIT Undergraduate Research Technology Conference (URTC), Virtual, 8–10 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–5. [Google Scholar]
- Siyanwal, R.; Agarwal, A.; Srirama, S.N. An Energy Efficient Fog-Based Internet of Things Framework to Combat Wildlife Poaching. Sustain. Comput. Inform. Syst. 2025, 45, 101070. [Google Scholar] [CrossRef]
- Stöcker, C.; Bennett, R.; Nex, F.; Gerke, M.; Zevenbergen, J. Review of the Current State of UAV Regulations. Remote Sens. 2017, 9, 459. [Google Scholar] [CrossRef]
- Getting Started–Conservation AI. Available online: https://www.conservationai.co.uk/getting-started/ (accessed on 15 April 2025).
- Data Sets-LILA BC. Available online: https://lila.science/datasets (accessed on 14 April 2025).
- About Wildlife Insights AI|Wildlife Insights. Available online: https://www.wildlifeinsights.org/about-wildlife-insights-ai# (accessed on 9 June 2025).
- Movebank. Available online: https://www.movebank.org/cms/movebank-content/get-started (accessed on 14 April 2025).
- Kays, R.; Davidson, S.C.; Berger, M.; Bohrer, G.; Fiedler, W.; Flack, A.; Hirt, J.; Hahn, C.; Gauggel, D.; Russell, B.; et al. The Movebank System for Studying Global Animal Movement and Demography. Methods Ecol. Evol. 2022, 13, 419–431. [Google Scholar] [CrossRef]
- Ivanova, N.V.; Shashkov, M.P. The Possibilities of GBIF Data Use in Ecological Research. Russ. J. Ecol. 2021, 52, 1–8. [Google Scholar] [CrossRef]
- GBIF Dataset Search. Available online: https://www.gbif.org/dataset/search (accessed on 14 April 2025).
- Integrations-EarthRanger. Available online: https://www.earthranger.com/integrations (accessed on 9 June 2025).
- Di Cecco, G.J.; Barve, V.; Belitz, M.W.; Stucky, B.J.; Guralnick, R.P.; Hurlbert, A.H. Observing the Observers: How Participants Contribute Data to INaturalist and Implications for Biodiversity Science. Bioscience 2021, 71, 1179–1188. [Google Scholar] [CrossRef]
Database | W1 | W2 | W3 | W4 | W5 | Total |
---|---|---|---|---|---|---|
IEEE Xplore | 6 | 4 | 3 | 3 | 6 | 22 |
Springer | 10 | 2 | 5 | 2 | 1 | 20 |
Wiley | 5 | 6 | 0 | 6 | 1 | 18 |
MDPI | 6 | 2 | 1 | 3 | 2 | 14 |
ScienceDirect | 4 | 4 | 2 | 1 | 3 | 14 |
Francis & Taylor | 2 | 0 | 0 | 2 | 1 | 5 |
Others | 1 | 1 | 2 | 0 | 0 | 4 |
Total | 34 | 19 | 13 | 17 | 14 | 97 |
Algorithms | Wildlife Applications |
---|---|
Automated Species Identification | |
Faster R-CNN | Identification of caribou [37]; Bengal Tiger [38]; koala [46,47]. |
CNN | Identification (kudus, giraffes, zebras, rhinos) [42]; marine species (seals, turtles, gannets) [49]. |
YOLOv3/4/5/7/8 | Deer in forests [39]; cattle [40]; (cows, deer, horses) [44]; nocturnal species (hares, roe deer) [48]; avian [50]; arboreal species (koalas, gliders) [51]. |
RandomForest/SVM/Reg. Trees | Waterbird population [43]. |
{SE,WILD,ALSS}-YOLO | Sheep, cattle, seal, camelus, zebra, kiang [30,31]; thermal images [32]. |
YOLO + TensorFlow | Herd species (elephants, zebras) [41]. |
ResNet | Species classification (deer, geese, cattle, horses) [28]. |
GAN (BATScan) | Bat species classification (>30 species) [35]. |
RetinaNet | Thermal imagery [33]. |
Sobel edge-based method | Detection of large mammals [45]. |
Tracking and Behavioral Analysis | |
CNN | Gelada monkey pose/movement tracking [61]. |
YOLOv3/7 | Procapra goat tracking [54,60]. |
Reinforcement Learning | Robotics shepherding system [63]; zebra tracking [64]. |
DenseNet (DeepPoseKit) | Animal pose estimation [29]. |
IDTRACKER.AI (Trex) | Multiple animal tracking and 2D pose estimation [55]. |
Particle Filter (PF) | Localization and tracking of multiple radio-tagged animals [56,57]. |
Pareto algorithm | UAV waypoint optimization for VHF-tagged animals tracking [58]. |
Optimal Transport (OT) | Multi-UAV for animal herds movement modeling with OT theory [59]. |
Ant Colony Opt. (ACO) | Deer tracking strategies with ACO theory [62]. |
Surveillance and Anti-Poaching | |
Region-Based CNN | Shark detection from aerial imagery and IOT sensors [73]. |
ResNet | Rhino/vehicle detection with GSM alerts [74]. |
YOLOv3/v516/8 | Occluded person detection under canopy [66,67]; poacher detection and alert issuing [65]; occluded person in complex environment [68]; surveillance of (black rhino, giraffe, ostrich, springbok) [69]. |
YOLOR | SMS-based wild animal activity alerts (25 classes) [75]. |
GAN and YOLO | Nocturnal surveillance trained with iNaturalist datasets [71,72]. |
Particle Swarm Opt. | Detection of standing or walking people in occluded forest [76]. |
Agent-based modeling | Evaluate a surveillance operation using [77]. |
Population Estimation | |
Random Forest | Mapping and counting nests for waterbirds breeding colonies [82,83]. |
CNN | Counting animals from images at 100 m height [91]; sheep counting [95]. |
CNN and Picterra | Pinniped (seal) surveys [86]. |
Mask-RCNN | Cattle detection and counting [93,94]. |
YOLOv2 | Cattle detection and counting [92]. |
DenoiSeg | Waterbird counting during breeding and non-breeding periods [84]. |
TIR Object Finder Software | Monitoring and surveying European elk [88]. |
Graph Reg. Flow Attention Net | Density map estimation for video animal counting [96]. |
Otsu Thresholding | Thermal image segmentation for animal counts [89]. |
Habitat Analysis | |
CNN | Vegetation segmentation with multispectral cameras [102]; tree species classification for forest inventories [105]. |
Transformer–CNN hybrid | Early wildfire detection in thermal imagery [99]. |
YOLOv5 | Invasive Siam weed detection in UAV imagery [103]. |
LSTM-RNN | Alfalfa quality prediction using hyperspectral drone imagery [104]. |
Two Group Clustering | Drone swarm optimization for detecting fires encroachment [100]. |
MATLAB Morphological Filters | Delineation of damaged areas via drone imagery [101]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aliane, N. Drones and AI-Driven Solutions for Wildlife Monitoring. Drones 2025, 9, 455. https://doi.org/10.3390/drones9070455
Aliane N. Drones and AI-Driven Solutions for Wildlife Monitoring. Drones. 2025; 9(7):455. https://doi.org/10.3390/drones9070455
Chicago/Turabian StyleAliane, Nourdine. 2025. "Drones and AI-Driven Solutions for Wildlife Monitoring" Drones 9, no. 7: 455. https://doi.org/10.3390/drones9070455
APA StyleAliane, N. (2025). Drones and AI-Driven Solutions for Wildlife Monitoring. Drones, 9(7), 455. https://doi.org/10.3390/drones9070455