Agroecological Alternatives for Substitution of Glyphosate in Orange Plantations (Citrus sinensis) Using GIS and UAVs
Abstract
1. Introduction
- The creation of agroecological alternatives to replace toxic agrochemicals such as glyphosate and Paraquat, as part of actions that the Mexican federal government is implementing for responsible production and consumption.
- Digitalization of peasant agriculture with the adoption of digital technologies by farmers and rural communities to improve management, handling, and quality of life and modernize the sector: This includes the use of tools such as UAVs, artificial intelligence (AI), and big data (BD) to optimize production, improve efficiency, and increase sustainability.
- Quantifying the impact of actions carried out, in this case agroecological treatments, in a fast and accurate way through the use of unmanned aerial vehicles and geographic information systems.
2. Materials and Methods
2.1. Location and Experiment Setup
2.2. General Workflow
2.3. Data Collection
2.3.1. Ground Truth
2.3.2. Image Collection
2.4. Data Analysis
3. Results and Discussion
4. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
GIT | Geographic Information Technology; |
GLONASS | Satellite positioning system with characteristics very similar to GPS in practice; |
RPAS | Remotely piloted aircraft systems; |
UAS | Unmanned aerial systems; |
Survey 123 | A simple and intuitive form-centric data-gathering solution. Create, share, and analyze surveys in just three easy steps; |
IGL | Intelligent georeferencing logs; |
HLB | Huanglongbing (HLB) is a bacterial infection of citrus trees transmitted by the Asian citrus psyllid Diaphorina citri; |
ID | Intelligent database; |
NDVI | Normalized difference vegetation index; |
DDE | Days after establishment; |
ANOVA | Analysis of variance; |
R2 | Coefficient of determination. |
References
- Radosevich, S.R.; Holt, J.S.; Ghersa, C.M. Ecology of Weeds and Invasive Plants; Jonh Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 83–101. [Google Scholar]
- Zaller, J.G. What is the problem? Pesticides in our everyday life. In Daily Poison; Springer: Cham, Switzerland, 2020; pp. 1–125. [Google Scholar]
- Heap, I. The International Herbicide-Resistant Weed Database. 2023. Available online: www.weedscience.org (accessed on 27 November 2024).
- CONACYT. Consejo Nacional de Ciencia y Tecnología. Expediente Científico Sobre Glifosato y los GM. 2020. Available online: https://secihti.mx/wp-content/uploads/documentos/glifosato/Dossier_formato_glifosato.pdf (accessed on 26 November 2024).
- Alcántara-de la Cruz, R.; Cruz-Hipolito, H.E.; Domínguez-Valenzuela, J.A.; De Prado, R. Glyphosate ban in Mexico: Potential impacts on agriculture and weed management. Pest Manag. Sci. 2021, 77, 3820–3831. [Google Scholar] [CrossRef] [PubMed]
- SEGOB. Secretaría de Gobernación. DECRETO por el que se Establecen las Acciones que Deberán Realizar las Dependencias y Entidades que Integran la Administración Pública Federal, en el Ámbito de sus Competencias, para Sustituir Gradualmente el uso, Adquisición, Distribución, Promoción e Importación de la Sustancia Química Denominada Glifosato y de los Agroquímicos Utilizados en Nuestro País que lo Contienen Como Ingrediente Activo, por Alternativas Sostenibles y Culturalmente Adecuadas, que Permitan Mantener la Producción y Resulten Seguras para la Salud Humana, la Diversidad Biocultural del país y el Ambiente. 2020. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5609365&fecha=31/12/2020#gsc.tab=0 (accessed on 24 November 2024).
- CONACYT. Consejo Nacional de Ciencia y Tecnología. Manejo Ecológico Integral de Arvenses en México. 2021. Available online: https://alimentacion.conahcyt.mx/glifosato/descargables/alternativas/materiales/MEIA_01_Presentacion.pdf (accessed on 26 November 2024).
- Gómez-Cruz, M.A.; Hernández-Andrade, M.A.; Gómez-Tovar, L. Siembra de Leguminosas para el Manejo de Arvenses y la Sustitución de los Herbicidas a Base de Glifosato. Publicaciones Agroecológicas. 2022. Available online: https://www.researchgate.net/publication/365298115_Siembra_de_leguminosas_para_el_manejo_de_arvenses_y_la_sustitucion_de_los_herbicidas_a_base_de_glifosato (accessed on 8 December 2024).
- De Marchi, M.; Diantini, A.; Pappalardo, S.E. Drones and Geographical Information Technologies in Agroecology and Organic Farming Contributions to Technological Sovereignty; CRC Press: Boca Raton, FL, USA, 2022; pp. 1–308. [Google Scholar]
- Kumar, A.; Kumar, S.; Lal, P.; Saikia, P.; Srivastava, P.K.; Petropoulos, G.P. General Introduction to GPS/GNSS technology. In GPS and GNS Technology in Geosciences; Elsevier: Ámsterdam, The Netherlands, 2021; pp. 3–20. [Google Scholar]
- Paneque-Gálvez, J.; Vargas-Ramírez, N.; Napoletano, B.; Cummings, A. Grassroots innovation using drones for indigenous mapping and monitoring. Land 2017, 6, 86. [Google Scholar] [CrossRef]
- Vargas-Ramírez, N.; Paneque-Gálvez, J. The Global Emergence of Community Drones (2012–2017). Drones 2019, 3, 76. [Google Scholar] [CrossRef]
- Gómez-Cruz, M.A.; Gómez-Tovar, L.; Schwentensius-Rindermann, R.; Rodríguez-Nieto, I.M.; Reyes-Rosales, R.; Villatoro-López, M. Guía Agroecológica Para la Producción de Naranja Orgánica. Publicaciones Agroecológicas. 2017. Available online: https://www.researchgate.net/publication/324248829_Guia_agroecologica_para_la_produccion_de_naranja_organica (accessed on 15 October 2024).
- Rocha, F.; Neto, A.O.; Bottega, E.; Guerra, N.; Rocha, R.; Vilar, C. Weed mapping using techniques of precision agriculture. Planta Daninha 2015, 33, 157–164. [Google Scholar] [CrossRef]
- SENASICA. Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. Manual Operativo de la Campaña Contra Malezas Reglamentadas. Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. 2013. Available online: https://www.gob.mx/cms/uploads/attachment/file/108116/Manual_Operativo.pdf (accessed on 27 November 2024).
- CESAVESLP. Comité Estatal de Sanidad Vegetal de San Luis Potosí. Campaña Nacional contra Mosca de la Fruta. 2024. Available online: https://www.cesaveslp.org.mx/Moscas.html (accessed on 27 November 2024).
- Galindo-Mendoza, M.G.; Aldaz-Galicia, N.Y.; Contreras-Servín, C.; Saldierna-Salas, G.; Almendarez-Rocha, S.D. Articulación territorial de la gestión de plaguicidas en el marco de la protección fitosanitaria. El caso del valle agrícola de Rioverde y Ciudad Fernández, San Luis Potosí. Investig. Geogr. 2021, 106, 1–19. [Google Scholar] [CrossRef]
- Contreras-Servin, C. Condiciones Climáticas Asociadas al Establecimiento y Dispersión de la Diaphorina Citri y la Enfermedad del Huanglongbing (HLB) en México. In Entomología Mexicana; Universidad Autónoma de San Luis Potosí: San Luis Potosí, México, 2012; pp. 101–117. [Google Scholar]
- Brunner, B.; Beaver, J.; Flores, L. Hoja Informativa. 2011. Available online: https://www.yumpu.com/es/document/read/9154627/mucuna-pruriens-agricultura-organic-a-puerto-rico (accessed on 20 October 2024).
- Galindo-Mendoza, M.G.; Schwentensius-Rindermann, R.; Barrera-López, V.A.; Navarro-Contreras, H.R.; Hernández-Vázquez, B.; Saldierna-Salas, G. Traces of glyphosate in corn (Zea mays L.) and avocado (Persea americana Mill.) weeds supported by vant and raman spectroscopy. Agrociencia 2023, 57, 1–15. [Google Scholar] [CrossRef]
- INEGI. Instituto Nacional de Estadística y Geografía. Prontuario de Información Geográfica Municipal de los Estados Unidos Mexicanos. Ciudad Fernández, San Luis Potosí. 2009. Available online: http://www3.inegi.org.mx/contenidos/app/mexicocifras/datos_geograficos/24/24011.pdf (accessed on 12 October 2024).
- LaNGIF. P-CONAHCYT-UACH NO. 322610. Alternativas Agroecológicas Orientadas a la Sustitución Gradual de Herbicidas a Base de Glifosato en Frutales y Cultivos básicos 2022–2024. Available online: http://langif.uaslp.mx/faros_agroecologicos.php#:~:text=Este%20proyecto%20se%20fundamenta%20en,para%20frutales%20y%20cultivos%20b%C3%A1sicos (accessed on 10 October 2024).
- Zhang, J.; Huang, Y.; Pu, R.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.; Huang, W. Monitoring plant diseases and pests through remote sensing technology: A review. Comput. Electron. Agric. 2019, 165, 104943. [Google Scholar] [CrossRef]
- SEGOB. Secretaría de Gobernación. NORMA Oficial Mexicana NOM-107-SCT3-2019, Que Establece los Requerimientos para Operar un Sistema de Aeronave Pilotada a Distancia (RPAS) en el Espacio Aéreo Mexicano. 2019. Available online: https://www.dof.gob.mx/normasOficiales/8006/sct11_C/sct11_C.html (accessed on 31 October 2024).
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- SIE. Sistema de Información Económica. Portal del Mercado Cambiario. 2024. Available online: https://www.banxico.org.mx/tipcamb/main.do?page=tip&idioma=sp (accessed on 27 November 2024).
- Petraki, D.; Gazoulis, I.; Kokkini, M.; Danaskos, M.; Kanatas, P.; Rekkas, A.; Travlos, I. Digital Tools and Decision Support Systems in Agroecology: Benefits, Challenges, and Practical Implementations. Agronomy 2025, 15, 236. [Google Scholar] [CrossRef]
- Osorio-Espinoza, H.; Leyva-Galán, Á.; Toledo-Toledo, E. Influence of live and dead covers on weeds, in an agroecosystem with rambutan (Nephelium lappaceum L.) in Mexico. Cultiv. Trop. 2023, 44, 1–7. [Google Scholar]
- Bassey, M.S.; Shittu, E.A.; Etim, E.E.; Etopobong, E.J. Soil and sugar quality improvement influenced by mulching and weed management practices in Nigeria. J. Plant Dev. 2024, 31, 97–103. [Google Scholar] [CrossRef]
- Damgaard, C.; Strandberg, B.; Ehlers, B.; Reisner, H.R.; Tune, S.M. Effect of nitrogen and glyphosate on the plant community composition in a simulated field margin ecosystem: Model-based ordination of pin-point cover data. Environ. Pollut. 2024, 315, 120377. [Google Scholar] [CrossRef] [PubMed]
- Mulinge, J.M.; Saha, H.M.; Mounde, L.G.; Walsiwa, L.A. Effects of Legume Cover Crops on Orange (Citrus sinensis) Fruit Weight and Brix. Int. J. Plant Soil Sci. 2018, 21, 1–9. [Google Scholar] [CrossRef]
- Eide, A.; Koparan, C.; Zhang, Y.; Ostlie, M.; Howatt, K.; Sun, X. UAV-Assisted Thermal Infrared and Multispectral Imaging of Weed Canopies for Glyphosate Resistance Detection. Remote Sens. 2021, 13, 4606. [Google Scholar] [CrossRef]
Treatment | Mechanical Implementation and Live–Dead Covers | Dosage and Number of Plants |
---|---|---|
A1 | Brush cutter | 7 |
A2 | Mucuna pruriens | 7 |
A3 | Canavalia ensiformis | 7 |
A4 | Crotalaria juncea | 7 |
A5 | Dead corn cover | 7 |
A6 | Bioherbicide | 10 mL/L |
A7 | Control witness | 7 |
Positive Weeds | Negative Weeds |
---|---|
1. Acalypha setosa | 11. Malva silvestris |
2. Amaranthus palmeri | 12. Euphorbia prostrata |
3. Argemone munita | 13. Solanum elaeagnifolium |
4. Bidens odorata | |
5. Boerhavia erecta | |
6. Parthenium hysterophorus | |
7. Stevia berlandieri | |
8. Taraxacum officinale | |
9. Trifolium repens | |
10. Elusine indica |
Flight Mission | Sensor | Flight Date (Acquisition) | Flight Height (m) | N of Images | Surface (m2) | Pixel (GSD) (cm) |
---|---|---|---|---|---|---|
1 | Mapir Survey3, 1″ CMOS (visible) | 4 July 2023 | 25 | 120 | 1840 | 1 |
2 | 18 August 2023 | 146 | 1840 | 1 | ||
3 | 20 October 2023 | 90 | 1840 | 1.17 |
Scientific Name | Parthenium hysterophorus | Eleusine indica (plants/m2) | Trifolium repens | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
bs | 30 DAE | 60 DAE | 90 DAE | bs | 30 DAE | 60 DAE | 90 DAE | bs | 30 DAE | 60 DAE | 90 DAE | ||
Treatments | A1—Brush cutter | 230 | 200 | 187 | 142 | 300 | 288 | 250 | 190 | 176 | 131 | 248 | 42 |
A2—Mucuna pruriens | 70 | 62 | 50 | 10 | 170 | 157 | 75 | 25 | 149 | 103 | 76 | 50 | |
A3—Canavalia ensiformis | 98 | 87 | 50 | 30 | 140 | 128 | 120 | 110 | 136 | 83 | 40 | 35 | |
A4—Crotalaria juncea | 95 | 89 | 50 | 25 | 150 | 121 | 70 | 69 | 100 | 84 | 89 | 12 | |
A5—Dead corn cover | 65 | 55 | 27 | 9 | 130 | 114 | 36 | 10 | 129 | 121 | 12 | ||
A6—Bioherbicide | 125 | 110 | 50 | 25 | 300 | 283 | 69 | 59 | 50 | 48 | 46 | ||
A7—Control witness | 112 | 120 | 128 | 134 | 250 | 280 | 340 | 370 | 74 | 65 | 68 | 79 |
Treatment | Mechanical Implement and Live–Dead Covers | R2 Between Weed Removal and NDVI | Cost of Treatment USD/ha |
---|---|---|---|
A1 | Brush cutter | 0.331 | 217 |
A2 | Mucuna pruriens | 0.823 | 2666 |
A3 | Canavalia ensiformis | 0.525 | 2666 |
A4 | Crotalaria juncea | 0.590 | 2897 |
A5 | Dead corn cover | 0.836 | 3409 |
A6 | Bioherbicide | 0.410 | 119 |
A7 | Control witness | 0.189 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galindo Mendoza, M.G.; Cárdenas Tristán, A.; Pérez Medina, P.; Schwentesius Rindermann, R.; Rivas García, T.; Contreras Servín, C.; Reyes Cárdenas, O. Agroecological Alternatives for Substitution of Glyphosate in Orange Plantations (Citrus sinensis) Using GIS and UAVs. Drones 2025, 9, 398. https://doi.org/10.3390/drones9060398
Galindo Mendoza MG, Cárdenas Tristán A, Pérez Medina P, Schwentesius Rindermann R, Rivas García T, Contreras Servín C, Reyes Cárdenas O. Agroecological Alternatives for Substitution of Glyphosate in Orange Plantations (Citrus sinensis) Using GIS and UAVs. Drones. 2025; 9(6):398. https://doi.org/10.3390/drones9060398
Chicago/Turabian StyleGalindo Mendoza, María Guadalupe, Abraham Cárdenas Tristán, Pedro Pérez Medina, Rita Schwentesius Rindermann, Tomás Rivas García, Carlos Contreras Servín, and Oscar Reyes Cárdenas. 2025. "Agroecological Alternatives for Substitution of Glyphosate in Orange Plantations (Citrus sinensis) Using GIS and UAVs" Drones 9, no. 6: 398. https://doi.org/10.3390/drones9060398
APA StyleGalindo Mendoza, M. G., Cárdenas Tristán, A., Pérez Medina, P., Schwentesius Rindermann, R., Rivas García, T., Contreras Servín, C., & Reyes Cárdenas, O. (2025). Agroecological Alternatives for Substitution of Glyphosate in Orange Plantations (Citrus sinensis) Using GIS and UAVs. Drones, 9(6), 398. https://doi.org/10.3390/drones9060398