The Impact of Clinical Sample Transportation by Unmanned Aerial Systems on the Results of Laboratory Tests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Pre-Analytical Phase and Flight Data
2.3. Analytical Phase—Clinical Laboratory Methods
2.4. Statistical Analysis
2.5. Institutional Review Board Statement
3. Results
3.1. Pre-Analytical Indices
3.2. Biochemistry and Hematology Panel
3.3. Coagulation Assay
3.4. Urine Tests
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALP | alkaline phosphatase |
ALT | alanine transaminase |
AST | aspartate transferase |
BUN | Blood Urea Nitrogen |
CAAI | Civil Aviation Authority Israel |
CBC | complete blood count |
dL | deciliter |
g | gram |
HDL | high-density lipoprotein |
IQR | interquartile range |
LDH | Lactic dehydrogenase |
mg | milligram |
mmol | millimole |
PTT | partial thromboplastin time |
PT | prothrombin time |
SD | standard deviation |
Sec | seconds |
UAS | Transport by unmanned aerial systems |
References
- Nybo, M.; Cadamuro, J.; Cornes, M.P.; Gómez-Rioja, R.; Grankvist, K. Sample transportation—An overview. Diagnosis 2019, 6, 39–43. [Google Scholar] [CrossRef]
- Vergouw, B.; Nagel, H.; Bondt, G.; Custers, B. Drone technology: Types, payloads, applications, frequency spectrum issues and future developments. In The Future of Drone Use: Opportunities and Threats from Ethical and Legal Perspectives; Custers, B., Ed.; T.M.C. Asser Press: The Hague, The Netherlands, 2016; pp. 21–45. [Google Scholar]
- Pandey, G.K.; Gurjar, D.S.; Yadav, S.; Jiang, Y.; Yuen, C. UAV-Assisted Communications with RF Energy Harvesting: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2024, 1. [Google Scholar] [CrossRef]
- Luong, N.C.; Hoang, D.T.; Wang, P.; Niyato, D.; Kim, D.I.; Han, Z. Collection and Wireless Communication in Internet of Things (IoT) Using Economic Analysis and Pricing Models: A Survey. IEEE Commun. Surv. Tutor. 2016, 18, 2546–2590. [Google Scholar] [CrossRef]
- Li, J.; Sun, G.; Duan, L.; Wu, Q. Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual Antenna Arrays. IEEE Trans. Mob. Comput. 2024, 23, 4890–4907. [Google Scholar] [CrossRef]
- Zailani, M.A.H.; Raja-Sabudin, R.Z.A.; Ismail, A.; Abd-Rahman, R.; Mohd-Saiboon, I.; Sabri, S.I.; Seong, C.K.; Mail, J.; Md-Jamal, S.; Beng, G.K.; et al. Influence of drone carriage material on maintenance of storage temperature and quality of blood samples during transportation in an equatorial climate. PLoS ONE 2022, 17, e0269866. [Google Scholar] [CrossRef]
- Michel, R. Swiss Post Medical Drone Carrying Clinical Laboratory Specimens Crashes in Switzerland. Dark Daily. 2022. Available online: https://www.darkdaily.com/2019/03/15/swiss-post-medical-drone-carrying-clinical-laboratory-specimens-crashes-in-switzerland/ (accessed on 26 February 2024).
- Greaves, R.F.; Bernardini, S.; Ferrari, M.; Fortina, P.; Gouget, B.; Gruson, D.; Lang, T.; Loh, T.P.; Morris, H.A.; Park, J.Y.; et al. Key questions about the future of laboratory medicine in the next decade of the 21st century: A report from the IFCC-Emerging Technologies Division. Clin. Chim. Acta 2019, 495, 570–589. [Google Scholar] [CrossRef]
- Hiebert, B.; Nouvet, E.; Jeyabalan, V.; Donelle, L. The Application of Drones in Healthcare and Health-Related Services in North America: A Scoping Review. Drones 2020, 4, 30. [Google Scholar] [CrossRef]
- Carrillo-Larco, R.M.; Moscoso-Porras, M.; Taype-Rondan, A.; Ruiz-Alejos, A.; Bernabe-Ortiz, A. The use of unmanned aerial vehicles for health purposes: A systematic review of experimental studies. Glob. Health Epidemiol. 2018, 3, e13. [Google Scholar] [CrossRef]
- Aggarwal, S.; Gupta, P.; Balaji, S.; Sharma, S.; Ghosh, A.K.; Simmy; Bhargava, B.; Panda, S. Assessing the Feasibility of Drone-Mediated Vaccine Delivery: An Exploratory Study. Health Sci. Rep. 2025, 8, e70208. [Google Scholar] [CrossRef]
- Homier, V.; Brouard, D.; Nolan, M.; Roy, M.A.; Pelletier, P.; McDonald, M.; de Champlain, F.; Khalil, E.; Grou-Boileau, F.; Fleet, R. Drone versus ground delivery of simulated blood products to an urban trauma center: The Montreal Medi-Drone pilot study. J. Trauma. Acute Care Surg. 2021, 90, 515–521. [Google Scholar] [CrossRef]
- Gavi. Rwanda Launches World’s First National Drone Delivery Service Powered by Zipline. Gavi, The Vaccine Alliance. 2016. Available online: https://www.gavi.org/news/media-room/rwanda-launches-worlds-first-national-drone-delivery-service-powered-zipline (accessed on 26 February 2024).
- Reuters. Drones to Deliver Vaccines, Blood and Drugs Across Ghana|Euronews. Euronews. Available online: https://www.euronews.com/2019/04/24/drones-to-deliver-vaccines-blood-and-drugs-across-ghana (accessed on 26 February 2024).
- Makoye, K.; Reuters. Buzz as World’s Biggest Drone Drug Deliveries Take off in Tanzania. Reuters. 2017. Available online: https://www.reuters.com/article/idUSKCN1B91F7/ (accessed on 26 February 2024).
- Scalea, J.R.; Restaino, S.; Scassero, M.; Bartlett, S.T.; Wereley, N. The final frontier? Exploring organ transportation by drone. Am. J. Transpl. 2019, 19, 962–964. [Google Scholar] [CrossRef]
- Scalea, J.R.; Restaino, S.; Scassero, M.; Blankenship, G.; Bartlett, S.T.; Wereley, N. An Initial Investigation of Unmanned Aircraft Systems (UAS) and Real-Time Organ Status Measurement for Transporting Human Organs. IEEE J. Transl. Eng. Health Med. 2018, 6, 4000107. [Google Scholar] [CrossRef]
- Amukele, T.K.; Sokoll, L.J.; Pepper, D.; Howard, D.P.; Street, J. Can unmanned aerial systems (drones) be used for the routine transport of chemistry, hematology, and coagulation laboratory specimens? PLoS ONE 2015, 10, e0134020. [Google Scholar] [CrossRef]
- Amukele, T.K.; Hernandez, J.; Snozek, C.L.; Wyatt, R.G.; Douglas, M.; Amini, R.; Street, J. Drone transport of chemistry and hematology samples over long distances. Am. J. Clin. Pathol. 2017, 148, 427–435. [Google Scholar] [CrossRef]
- Peltier, G.C.; Meledeo, M.A. The impact of delivery by a fixed-wing, sling-launched unmanned aerial vehicle on the hematologic function of whole blood. J. Trauma. Acute Care Surg. 2023, 95, S152–S156. [Google Scholar] [CrossRef]
- Perlee, D.; van der Steege, K.H.; den Besten, G. The effect of drone transport on the stability of biochemical, coagulation and hematological parameters in healthy individuals. Clin. Chem. Lab. Med. 2021, 59, 1772–1776. [Google Scholar] [CrossRef]
- Weekx, S.; Van Lint, P.; Jacobs, S. The effects of drone transportation on routine laboratory, immunohematology, flow cytometry and molecular analyses. Clin. Chem. Lab. Med. 2024, 63, 311–319. [Google Scholar] [CrossRef]
- Yakushiji, F.; Yakushiji, K.; Murata, M.; Hiroi, N.; Takeda, K.; Fujita, H. The Quality of Blood is not Affected by Drone Transport: An Evidential Study of the Unmanned Aerial Vehicle Conveyance of Transfusion Material in Japan. Drones 2020, 4, 4. [Google Scholar] [CrossRef]
- Israel Weather. 2022. Available online: https://www.israelweather.co.il/ (accessed on 16 February 2025).
- Mark, D.B.; Hansen, S.M.; Starks, M.L.; Cummings, M.L. Drone-Based Automatic External Defibrillators for Sudden Death? Do We Need More Courage or More Serenity? Circulation 2017, 135, 2466–2469. [Google Scholar] [CrossRef]
- Zailani, M.A.; Azma, R.Z.; Aniza, I.; Rahana, A.R.; Ismail, M.S.; Shahnaz, I.S.; Chan, K.S.; Jamaludin, M.; Mahdy, Z.A. Drone versus ambulance for blood products transportation: An economic evaluation study. BMC Health Serv. Res. 2021, 21, 1308. [Google Scholar] [CrossRef]
- van Veelen, M.J.; Vinetti, G.; Cappello, T.D.; Eisendle, F.; Mejia-Aguilar, A.; Parin, R.; Oberhammer, R.; Falla, M.; Strapazzon, G. Drones reduce the time to defibrillation in a highly visited non-urban area: A randomized simulation-based trial. Am. J. Emerg. Med. 2024, 86, 5–10. [Google Scholar] [CrossRef]
Car n = 40 | Drone n = 40 | p Value a | |
---|---|---|---|
Glucose (mg/dL), median (IQR) | 89.5 (16.5) | 89.0 (16.7) | 0.8 b |
Creatinine (mg/dL), mean (SD) | 0.84 (0.14) | 0.85 (0.13) | 0.5 |
BUN (mg/dL), median (IQR) | 12.3 (5.0) | 12.3 (5.5) | 0.6 b |
Potassium (mmol/L), mean (SD) | 4.41 (0.33) | 4.44 (0.36) | 0.6 |
Sodium (mmol/L), median (IQR) | 139.0 (2.9) | 139.0 (1.2) | 0.7 b |
Calcium (mg/dL), mean (SD) | 9.82 (0.49) | 9.85 (0.41) | 0.4 |
Phosphor (mg/dL), mean (SD) | 3.59 (0.55) | 3.59 (0.55) | 0.8 |
LDH (U/L), mean (SD) | 358.2 (58.5) | 365.7 (62.7) | 0.3 |
Uric acid (mg/dL), mean (SD) | 5.0 (1.3) | 5.0 (1.3) | 0.9 |
Total bilirubin (mg/dL), median (IQR) | 0.43 (0.34) | 0.44 (0.32) | 0.4 b |
ALP (U/L), mean (SD) | 75.08 (19.21) | 75.05 (19.16) | 0.8 |
ALT (U/L), median (IQR) | 17.0 (12.5) | 17.0 (13.5) | 0.4 b |
AST (U/L), median (IQR) | 19.0 (6.8) | 19.0 (6.5) | 0.2 b |
GGT (U/L), mean (SD) | 23.55 (12.20) | 23.18 (12.42) | 0.01 |
Albumin (g/L), mean (SD) | 4.88 (0.31) | 4.94 (0.30) | 0.08 |
Protein (g/L), mean (SD) | 7.40 (0.4) | 7.38 (0.4) | 0.5 |
Total cholesterol (mg/dL), mean (SD) | 189.30 (40.3) | 189.40 (40.5) | 0.6 |
HDL (mg/dL), median (IQR) | 51.00 (15.4) | 50.85 (15.3) | 0.6 |
Triglyceride (mg/dL), median (IQR) | 120.90 (65.9) | 121.00 (65.8) | 0.9 |
Car n = 40 | Drone n = 40 | p Value a | |
---|---|---|---|
White blood cells (103/μL), mean (SD) | 7.3 (1.4) | 7.3 (1.4) | 0.08 |
Neutrophils (103/μL), mean (SD) | 4.1 (1.1) | 4.1 (1.1) | 0.9 |
Lymphocytes (103/μL), mean (SD) | 2.4 (0.7) | 2.3 (0.7) | 0.09 |
Monocytes (103/μL), mean (SD) | 0.5 (0.1) | 0.5 (0.1) | 0.2 |
Eosinophils, (103/μL), median (IQR) | 0.2 (0.1) | 0.2 (0.1) | 0.7 b |
Red blood cells (103/μL), median (IQR) | 4.9 (0.6) | 4.9 (0.5) | 0.9 b |
Hemoglobin (g/dL), mean (SD) | 14.2 (1.0) | 14.2 (1.1) | 0.8 |
Hematocrit (%), median (IQR) | 41.7 (3.1) | 42.0 (3.2) | 0.4 |
Mean corpuscular volume (fL), median (IQR) | 85.5 (4.9) | 85.4 (4.6) | 0.1 b |
Mean corpuscular hemoglobin (pg), median (IQR) | 29.2 (1.9) | 29.2 (1.9) | 0.9 b |
Mean corpuscular hemoglobin concentration (g/dL), mean (SD) | 34.4 (0.9) | 34.4 (0.9) | 0.4 |
Red cell Distribution Width (%), median (IQR) | 13.4 (0.9) | 13.5 (0.8) | 0.5 b |
Platelets (103/μL), mean (SD) | 241.0 (48.0) | 240.0 (47.2) | 0.5 |
(A). Semi-quantitative leucocytes and erythrocyte’s count | Car n = 40 | p value a | |||||
Drone n = 40 | Urine leucocytes | Negative | Low | Medium | High | Total | 0.2 |
Negative | 24 | 0 | 0 | 0 | 24 | ||
Low | 2 | 4 | 0 | 0 | 6 | ||
Medium | 0 | 0 | 4 | 0 | 4 | ||
High | 0 | 0 | 0 | 6 | 6 | ||
Total | 26 | 4 | 4 | 6 | 40 | ||
Urine erythrocytes | Negative | Low | Medium | High | Total | 0.3 | |
Negative | 26 | 0 | 0 | 0 | 26 | ||
Low | 0 | 9 | 0 | 0 | 9 | ||
Medium | 0 | 0 | 3 | 1 | 4 | ||
High | 0 | 0 | 0 | 1 | 1 | ||
Total | 26 | 9 | 3 | 2 | 40 | ||
(B). Urinalysis parameters and urine culture test | Car n = 40 | p value b | |||||
Drone n = 40 | Urine ketones | Negative | Positive | Total | 1.0 | ||
Negative | 38 (97.4%) | 0 (0.0%) | 38 | ||||
Positive | 1 (2.6%) | 1 (100.0%) | 2 | ||||
Total | 39 (100.0%) | 1 (100.0%) | 40 | ||||
Urine glucose | 1.0 | ||||||
Negative | 38 (100.0%) | 0 (0.0%) | 38 | ||||
Positive | 0 (0.0%) | 2 (100.0%) | 2 | ||||
Total | 38 (100.0%) | 2 (100.0%) | 40 | ||||
Urine nitrites | 1.0 | ||||||
Negative | 40 (100.0%) | 0 (0.0%) | 40 | ||||
Positive | 0 (0.0%) | 0 (100.0%) | 0 | ||||
Total | 40 (100.0%) | 0 (100.0%) | 40 | ||||
Urine protein | 1.0 | ||||||
Negative | 38 (97.4%) | 0 (0.0%) | 38 | ||||
Low | 1 (2.6%) | 1 (100.0%) | 2 | ||||
Total | 39 (100.0%) | 1 (100.0%) | 40 | ||||
Urine culture test | 1.0 | ||||||
Negative | 31 (100.0%) | 0 (0.0%) | 31 | ||||
Positive | 0 (0.0%) | 9 (100.0%) | 9 | ||||
Total | 31 (100.0%) | 9 (100.0%) | 40 | ||||
(C). Urine PH | Car n = 40 | Drone n = 40 | p Value c | ||||
Urine pH, median (IQR) | 6.0 (2.0) | 6.0 (2.0) | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shapira, M.; Cohen, B.; Friemann, S.; Tal, Y.; Teper, Z.; Dudkiewicz, M.; Portuguese, S.; Na’amnih, W.; Shriki, D.D. The Impact of Clinical Sample Transportation by Unmanned Aerial Systems on the Results of Laboratory Tests. Drones 2025, 9, 179. https://doi.org/10.3390/drones9030179
Shapira M, Cohen B, Friemann S, Tal Y, Teper Z, Dudkiewicz M, Portuguese S, Na’amnih W, Shriki DD. The Impact of Clinical Sample Transportation by Unmanned Aerial Systems on the Results of Laboratory Tests. Drones. 2025; 9(3):179. https://doi.org/10.3390/drones9030179
Chicago/Turabian StyleShapira, Maanit, Ben Cohen, Sarit Friemann, Yana Tal, Zila Teper, Mickey Dudkiewicz, Shirley Portuguese, Wasef Na’amnih, and Dikla Dahan Shriki. 2025. "The Impact of Clinical Sample Transportation by Unmanned Aerial Systems on the Results of Laboratory Tests" Drones 9, no. 3: 179. https://doi.org/10.3390/drones9030179
APA StyleShapira, M., Cohen, B., Friemann, S., Tal, Y., Teper, Z., Dudkiewicz, M., Portuguese, S., Na’amnih, W., & Shriki, D. D. (2025). The Impact of Clinical Sample Transportation by Unmanned Aerial Systems on the Results of Laboratory Tests. Drones, 9(3), 179. https://doi.org/10.3390/drones9030179