Active Fault-Tolerant Cooperative Control for Multi-QUAVs Using Relative Measurement Information
Abstract
Highlights
- A decoupled fault estimation observer is developed based on the derived observable subsystem, capable of estimating actuator faults and the leader’s unknown input signal.
- An active fault-tolerant cooperative control method is proposed, ensuring consensus-based formation stability for multi-QUAV systems with relative output measurements.
- Actuator fault can be estimated using relative output measurements, which is a challenge for multi-QUAVs due to the coupling of relative measurement information.
- The fault-tolerant method allows consensus-based formation control using only relative outputs, eliminating leader dependency and the need for absolute measurements.
Abstract
1. Introduction
2. Preliminaries
2.1. Graph Theory
2.2. H∞ Theory
- i.
- .
- ii.
- and .
3. Active Fault-Tolerant Cooperative Control Scheme Design
3.1. Observable Relative Multi-QUAV System
3.1.1. Linearizing Quadrotor UAV Model
3.1.2. Observable Subsystem of the Multi-QUAV System
3.2. Relative-Output-Based Fault Estimation Observer
3.3. Active Fault-Tolerant Cooperative Controller
4. Simulation
4.1. Experimental Conditions
4.2. Fault-Tolerant Control Performance
4.3. Performance Analysis
4.4. Comparative Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, M.; Zhang, X.; Chen, J.; Cheng, H. UAV Cluster-Assisted Task Offloading for Emergent Disaster Scenarios. Appl. Sci. 2023, 13, 4724. [Google Scholar] [CrossRef]
- Rashid, A.B.; Kausik, A.K.; Khandoker, A.; Siddque, S.N. Integration of Artificial Intelligence and IoT with UAVs for Precision Agriculture. Hybrid Adv. 2025, 10, 100458. [Google Scholar] [CrossRef]
- Adnan, M.H.; Zukarnain, Z.A.; Subramaniam, S.K. Path Planning for Multi-UAV-Assisted Mobile Edge Computing Framework Using Reinforcement Learning in Urban Environment Disaster Scenarios. Ad Hoc Netw. 2025, 178, 103928. [Google Scholar] [CrossRef]
- Jond, H.B.; Beaver, L.E.; Jiroušek, M.; Ahmadlou, N.; Bakırcıoğlu, V.; Saska, M. Flatness-Based Finite-Horizon Multi-UAV Formation Trajectory Planning and Directionally Aware Collision Avoidance Tracking. J. Franklin Inst. 2025, 362, 107867. [Google Scholar] [CrossRef]
- Gonzalez, V.; Jaillet, P. Multi-Drone Rescue Search in a Large Network. Eur. J. Oper. Res. 2025, 324, 787–798. [Google Scholar] [CrossRef]
- Cao, Z.; Chen, G. Enhanced Deep Reinforcement Learning for Integrated Navigation in Multi-UAV Systems. Chin. J. Aeronaut. 2025, 38, 103497. [Google Scholar] [CrossRef]
- Zhang, P.; Li, G. A Cooperative Dynamic Target Search Approach for Multi-UAV Systems Utilizing the MAPPO Algorithm. Discov. Artif. Intell. 2025, 5, 153. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Y.; Zhang, Y.; Chen, Y.; Du, Y. Collaborative Search Algorithm for Multi-UAVs Under Interference Conditions: A Multi-Agent Deep Reinforcement Learning Approach. Drones 2025, 9, 445. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, A.; Li, W.; Cai, H. Drone Swarm Robust Cooperative Formation Pursuit through Relative Positioning in a Location Denial Environment. Drones 2024, 8, 455. [Google Scholar] [CrossRef]
- Guzey, H.M. Adaptive Consensus-Based Formation Control of Fixed-Wing MUAVs. In Proceedings of the 2017 IEEE 4th International Conference on Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD), Kyiv, Ukraine, 17–19 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 184–187. [Google Scholar] [CrossRef]
- Xiang, Y.; Li, S.; Li, R.; Zhao, Z.; Zhang, H. Decentralized Consensus Inference-Based Hierarchical Reinforcement Learning for Multiconstrained UAV Pursuit-Evasion Game. IEEE Trans. Neural Netw. Learn. Syst. 2025; Early Access. [Google Scholar] [CrossRef]
- Liu, P.-M.; Guo, X.-G.; Wang, J.-L.; Lu, H.; Wu, Z.-G. Switching Function-Based Optimal Active Fault-Tolerant Bipartite Consensus Control for UAV Swarm. Automatica 2025, 179, 112440. [Google Scholar] [CrossRef]
- Xiao, L.; Xiao, Z.; Fu, Z.; Cheng, C.; Li, F.; Yang, Y. Multiple UAV Cooperative Substation Inspection: A Robust Fixed-Time Group Formation Control Scheme. Symmetry 2025, 17, 857. [Google Scholar] [CrossRef]
- Li, J.; Wang, H.; Wang, Y.; Zhang, M.; Ren, B.; Zhu, J. Terminal constraint guidance and predefined-time event-triggered consensus control for multi-UAV aerial rendezvous. Nonlinear Dyn. 2025, 113, 16695–16720. [Google Scholar] [CrossRef]
- Li, Y.; Li, A.; Zhang, Z.; Song, G. Fault-Tolerant Control of Nonlinear Cluster System for Fixed-Wing UAV Piston Engine Faults Based on Hierarchical Architecture. Aerosp. Sci. Technol. 2025, 157, 109804. [Google Scholar] [CrossRef]
- Guo, G.; Xiao, S.; Chen, F.; Hou, Z.; Tan, H. Dynamic Event-Triggered Predefined-Time Adaptive Attitude Fault-Tolerant Control for Uncertain Unmanned Aerial Vehicles with Disturbances and Actuator Faults. Aerosp. Sci. Technol. 2025, 165, 110481. [Google Scholar] [CrossRef]
- Hu, J.; Xu, Y.; Jiang, B. Game-Based Fault-Tolerant Formation Containment Control for Fixed-Wing UAVs Under the Fully Actuated System Framework. Aerosp. Sci. Technol. 2025, 160, 110052. [Google Scholar] [CrossRef]
- Cai, J.; Lovera, M. Passive Fault-Tolerant Control of Dual-System UAV Transition Flight Under Partial Loss of Propellers. Aerotec. Missili Spaz. 2025, 102, 131–143. [Google Scholar] [CrossRef]
- Wang, W.; Chen, Y.; Ren, Z.; Liu, H. Two-Step Robust Fault-Tolerant Controller Design Based on Nonlinear Extended State Observer (NESO) for Unmanned Aerial Vehicles (UAVs) with Actuator Faults and Disturbances. Drones 2025, 9, 183. [Google Scholar] [CrossRef]
- Wang, L.; Li, A.; Lu, H.; Wang, C.; Zabolotnov, Y. Distributed Adaptive Event-Triggered Finite-Time Fault-Tolerant Containment Control for Multi-UAVs with Input Constraints and Actuator Failures. J. Franklin Inst. 2024, 361, 107308. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, B.; Patton, R.J.; Zhang, K. Integrated Fault-Tolerant Control for Close Formation Flight. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 3257–3267. [Google Scholar] [CrossRef]
- Yin, L.; Liu, J.; Yang, P.; Shi, J. Sliding Mode Observer-Based Active Fault-Tolerant Control for UAVs Formation. IOP Conf. Ser. Mater. Sci. Eng. 2018, 452, 042068. [Google Scholar] [CrossRef]
- Yang, Z.; Li, M.; Yu, Z.; Cheng, Y.; Xu, G.; Zhang, Y. Fault Detection and Fault-Tolerant Cooperative Control of Multi-UAVs under Actuator Faults, Sensor Faults, and Wind Disturbances. Drones 2023, 7, 503. [Google Scholar] [CrossRef]
- Zhu, J.W.; Yang, G.H.; Zhang, W.A.; Yu, L. Cooperative Fault-Tolerant Tracking Control for Multiagent Systems: An Intermediate Estimator-Based Approach. IEEE Trans. Cybern. 2017, 47, 3890–3899. [Google Scholar] [CrossRef]
- Luo, F.; Zhou, D.; Li, Y.; Liu, K. An Active and Passive Combined Fault-Tolerant Control Approach for UAV with the Control Surface Fault. Trans. Inst. Meas. Control 2024, 46, 1293–1304. [Google Scholar] [CrossRef]
- Abdullah, M.; Zulfiqar, A.; Arman, J.H. An Integral Backstepping and Nonlinear Disturbance Observer-Based Sliding Mode Control for Active Fault-Tolerant Quadcopter UAVs with Simulation as Well as Hardware-in-the-Loop Experiments. Arab. J. Sci. Eng. 2025, 50, 01676. [Google Scholar] [CrossRef]
- Falcón, R.; Ríos, H.; Dzul, A. Sliding-Mode-Based Fault Diagnosis and Fault-Tolerant Control for Quad-Rotors. In Sliding-Mode Control and Variable-Structure Systems; Oliveira, T.R., Fridman, L., Hsu, L., Eds.; Studies in Systems, Decision and Control; Springer: Cham, Switzerland, 2023; Volume 490, p. 19. [Google Scholar] [CrossRef]
- Amador-Macias, M.; Hernández-Cortés, T.; Estrada-Manzo, V.; González-Sierra, J.; Tapia-Herrera, R. Actuator Fault-Tolerant Control for Mechatronic Systems and Output Regulation with Unknown Reference Signals. Appl. Sci. 2025, 15, 8551. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.; Liu, J.; Wu, Y.; Sun, C. Bipartite Finite-Time Consensus of Multi-Agent Systems with Intermittent Communication via Event-Triggered Impulsive Control. Neurocomputing 2024, 598, 127970. [Google Scholar] [CrossRef]
- Skogestad, S.; Postlethwaite, I. Multivariable Feedback Control: Analysis and Design; John Wiley & Sons: Chichester, UK, 2005. [Google Scholar]
- Green, M.; Limebeer, D.J.N. Linear Robust Control; Prentice Hall: Englewood Cliffs, NJ, USA, 1995. [Google Scholar]
- Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory; SIAM: Philadelphia, PA, USA, 1994. [Google Scholar]
- İnci, M.; Altun, Y. Disturbance Compensator Design Based on Dilated LMI for Linear Parameter-Varying Systems. Electronics 2024, 13, 3055. [Google Scholar] [CrossRef]
- Borja-Jaimes, V.; Coronel-Escamilla, A.; Escobar-Jiménez, R.F.; Adam-Medina, M.; Guerrero-Ramírez, G.V.; Sánchez-Coronado, E.M.; García-Morales, J. Fractional-Order Sliding Mode Observer for Actuator Fault Estimation in a Quadrotor UAV. Mathematics 2024, 12, 1247. [Google Scholar] [CrossRef]
- Menon, P.P.; Edwards, C. Robust Fault Estimation Using Relative Information in Linear Multi-Agent Networks. IEEE Trans. Autom. Control 2014, 59, 477–482. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, G.-H. Integrated design of fault estimation and fault-tolerant control for linear multi-agent systems using relative outputs. Neurocomputing 2019, 329, 468–475. [Google Scholar] [CrossRef]
Follower | Time Interval (s) | RMSEp (m) |
---|---|---|
QUAV 1 | [50, 300] | 0.0366 |
QUAV 2 | [100, 300] | 0.0408 |
QUAV 3 | [150, 300] | 0.0411 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, Y.; Chen, X.; Li, P.; Hou, P.; Wang, Z.; Nie, K. Active Fault-Tolerant Cooperative Control for Multi-QUAVs Using Relative Measurement Information. Drones 2025, 9, 699. https://doi.org/10.3390/drones9100699
Zhong Y, Chen X, Li P, Hou P, Wang Z, Nie K. Active Fault-Tolerant Cooperative Control for Multi-QUAVs Using Relative Measurement Information. Drones. 2025; 9(10):699. https://doi.org/10.3390/drones9100699
Chicago/Turabian StyleZhong, Yujiang, Xi Chen, Ping Li, Pinfan Hou, Zhen Wang, and Kunlin Nie. 2025. "Active Fault-Tolerant Cooperative Control for Multi-QUAVs Using Relative Measurement Information" Drones 9, no. 10: 699. https://doi.org/10.3390/drones9100699
APA StyleZhong, Y., Chen, X., Li, P., Hou, P., Wang, Z., & Nie, K. (2025). Active Fault-Tolerant Cooperative Control for Multi-QUAVs Using Relative Measurement Information. Drones, 9(10), 699. https://doi.org/10.3390/drones9100699