Search, Detect, Recover: A Systematic Review of UAV-Based Remote Sensing Approaches for the Location of Human Remains and Clandestine Graves
Abstract
Highlights
- This systematic review found that UAV-based remote sensing is a low-cost and low-altitude alternative for clandestine grave location. However, the knowledge base is fragmented due to inconsistent reporting on seminal aspects of experimental designs and aerial survey parameters.
- Several key trends were identified through a synthesis of the main themes across all studies reviewed, specifically related to operational challenges and findings from experimental designs.
- The lack of standardisation in burial and aerial survey conditions impedes the development of effective strategies for locating human remains and clandestine graves.
- More robust experimental designs will contribute to forensic realism of studies, while the integration of artificial intelligence in image processing could lead to the development of more reliable automated detection models, increasing the accuracy of human remains and grave location for application in forensic investigations.
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Screening Process (PRISMA Flow Diagram)
2.3. Inclusion and Exclusion Criteria
2.4. Qualitative Data Extraction and Thematic Synthesis
3. Results
3.1. Overview and Characteristics of Studies
Study ID | Study Details | Drone and Sensor | Aerial Survey | Burial Context | Image Processing Software | Other Detection Methods Used |
---|---|---|---|---|---|---|
ST1 | Blau et al. (2018) [89] Australian Facility for Taphonomic Experimental Research facility Yarramundi, New South Wales, Australia | Lightweight drones, and multirotor and fixed-wing aircraft Multispectral | Time of the flight: - Aerial Survey: - Altitude: 40 m GSD: - | Model: Human donor cadavers Burial conditions: A combination of single and mass graves with human cadavers. Cadavers were also buried with objects like clothes, cell phones, and wallets. Burial depth: 0.3 m, 1 m and 1.4 m | Specialised photogrammetric software | Airborne LIDAR |
ST2 | Evers and Masters, (2018) [92] Westmill Woodland Burial Ground, Oxfordshire/Wiltshire, England | DJI Phantom 1 model with the Naza-M flight control transmitter GoPro Hero 3 and a Zomei NIR filter | Time of the flight: Middle of the day Aerial Survey: Sequential grid pattern Altitude: 10–40 m GSD: - | Model: None Burial conditions: Single unmarked graves in a natural burial ground Burial depth: - | MATLAB (MathWorks R2017a) Agisoft Photoscan Professional | Foot/ground-based survey |
ST3 | Murray et al. (2018) [50] Forensic Anthropology Research Facility, Texas State University, San Marcos, Texas, USA | A custom octocopter UAV and tow Phantom 4 Pros (quadcopters) Hyperspectral (Headwall Nano-Hyperspec), thermal (FLIR Systems Vue Pro), RGB (standard camera from Phantom Pro) | Time of the flight: Solar noon (11 a.m.–3 p.m.) Aerial Survey: - Altitude: 200 ft GSD: RGB—2 cm/pixel at 200 ft; Hyperspectral—6 cm/pixel at 200 ft | Model: Human donor cadavers Burial conditions: Four sections: (1) 3 shallow graves; (2) visible cadaver decomposition islands (CDIs) from bodies that had been previously removed; (3) uncaged and scattered skeletal remains; (4) approximately twenty caged remains in various states of decomposition. Burial depth: Surface depositions | – 1 | – |
ST4 | Bodnar et al. (2019) [59] Bowling Green, Ohio, USA | DJI Inspire1 Model T600 UAV Zenmuse XT Longwave Infrared Thermal Camera (FLIR) | Time of the flight: 11:00 a.m. DST Aerial Survey: Not specified Altitude: 10′ (3.04 m), 25′ (7.62 m), 50′ (15.24 m), and 100′ (30.48 m). GSD: - | Model: Pigs Burial conditions: Four burials containing pig carrion and one soil only burial as control. Burial depth: 6″, 12″ and 24″ beneath the surface | FLIR Tools desktop application | – |
ST5 | Parrot et al. (2019) [69] Land located to the south of Chester, England | Custom DJI F550 Flame-wheel hexacopter A GoPro Hero 4 (Black Edition) Unmodified RGB camera | Time of the flight: Late Afternoon Aerial Survey: Raster pattern Altitude: 2 m, 5 m, 10 m and 20 m GSD: - | Model: Disturbed soil only (empty) burial Burial conditions: Roughly dug burial 1 m2 grave size Burial depth: Shallow | MATLAB (MathWorks R2017b) | – |
ST6 | Butters et al. (2021) [58] Queensland Police Service Driver Training Facility, Brisbane, Australia | DJI Inspire Zenmuse XT FLIR | Time of the flight: Morning and midday for the first 30 days, then once daily for the following 8 days, and sporadically until the end of the project. Aerial Survey: Images captured from stationary positions directly above the site. Altitude: 4, 8, 16, and 30 m GSD: - | Model: Pigs Burial conditions: Surface and buried; unwrapped, dismembered body parts and whole bodies. Burial depth: Surface, 50 cm and 60 cm | – | – |
ST7 | Rocke et al. (2021) [97] Northern Ireland * | Mavic Pro drone RGB | Time of the flight: - Aerial Survey: Grid pattern flown autonomously at 60 m spacing. Altitude: 100 m and 150 m GSD: 4.9 cm/pixel at 150 m altitude | Model: None Burial conditions: Simulated grave. Rectangular pit (0.75 m wide and 1.7 m long) containing a buried handbag with woollen clothes inside. Burial depth: 1 m | DroneDeploy [99] | GPR (100 MHz Rough Terrain Antenna, Mala Geoscience, Mala, Sweden) |
ST8 | Silván-Cárdenas et al. (2021) [31] Site Y: Yautepec, Morelos, Mexico Site M: Milpa Alta, Mexico City, Mexico | DJI Phantom 4 Advance RGB camera DJI Inspire V1 drone Xemus XT thermal camera | Time of the flight: Thermal images captured around dawn and noontime Aerial Survey: Double-scan flights were flown; the camera was oriented forward with a tilt of 70 degrees. Altitude: 50 m GSD: - | Model: Pigs Burial conditions: Y-site: In total, 7 pits of 2 × 2 m were excavated. In total, 10 complete carcasses (83–90 kg each) were deposited as follows: Y2—three pigs, Y4—two pigs, Y6—one pig and Y7— four pigs. Graves Y1, Y3 and Y5 were empty controls. M-Site: In total, 7 pits 2–3 m by 1–1.5 m were excavated with a loader machine. In total, 6 pigs were distributed as follows: M3—two pigs, M5—one pig, M6—one pig, M7—two pigs. Graves M1 and M4 were empty controls, while M2 contained a metal rod and clothes. Burial depth: Y-site: 1.5 m; 1.2 m; 1.1 m; 1 m; M-Site 0.9 m; 1.2 m; 1.3 m; 1.4 m | Pix4dmapper (Pix4D) MATLAB (MathWorks) | Portable field spectroradiometer (Field Spec 4 Std Res. with 350–2500 nm@ 1 nm by ASD Inc.) |
ST9 | Molina et al. (2022) [90] Antonio Nariño University, USME Campus, south of Bogota, Colombia | Parrot Bluegrass Field (PF726300) quadcopter Parrot Sequoia multispectral sensor and RGB camera | Time of the flight: - Aerial Survey: Automatic flight plan to monitor the 5 m × 10 m site. Altitude: - GSD: - | Model: Pigs Burial conditions: In total, 5 simulated clandestine graves (0.6 × 0.6 m). Clothed and unclothed and dismembered body parts were placed into four graves, one grave remained empty as a control. Burial depth: 0.5 m | Pix4Dfields (Pix4D) | GPR (ProEx model, Mala Geoscience, Mala, Sweden) and electrical resistivity surveys (GeoAmp 303 system, Subsuelo3D S.A.S, Bogotá, Colombia) |
ST10 | Rocke and Ruffell, (2022) [94] England * | DJI Inspire 2 Sentera 6× multispectral sensor and RGB camera | Time of the flight: - Aerial Survey: Flown at 90° facing directly down. The site was flown in North/South transects at 60 m altitude with 80% front and side overlap. Altitude: Not specified GSD: - | Model: Human burials Burial conditions: Three natural human burial grounds in the UK with interments ranging from 2005 to 2021. Burial depth: 1.8 and 1.4 m | Pix4Dfields (Pix4D) | – |
ST11 | Spera et al. (2022) [64] East End Cemetery, Richmond, Virginia, USA | DJI Mavic 2 Pro RGB | Time of the flight: - Aerial Survey: Image frontlap of 85%, and sidelap of 75% Altitude: 53.3 m GSD: 1.18 cm/pixel | Model: Human burials Burial conditions: Unmarked human burials in known cemetery (burial period 1980–2002) Burial depth: - | Pix4Dmapper (Pix4D) ArcGIS Pro (ESRI) | - |
ST12 | Alawadhi et al. (2023) [57] Jahra Pools Nature Reserve, Kuwait | Parrot Anafi thermal (quadcopter) Thermal (FLIR) Lepton 3.5 microbolometer sensor | Time of the flight: - Aerial Survey: - Altitude: 10, 30, and 50 m GSD: - | Model: Sheep carcasses Burial conditions: Two graves were simulated, 5 m apart 5 m × 2 m in size. G1—Empty control burial; G2—contained 8 sheep carcasses, clothing and 9 mm handgun shell casing. Burial depth: 1.5 m | Pix4Dmapper (Pix4D version 4.6.4) FLIR (FLIR Systems Inc., Wilsonville, OR, USA, Version 6.4.18039.1003) ArcMap (ESRI v.10.8.1.14362) ArcGIS Desktop (ESRI v.10.8.1) | – |
ST13 | Pringle et al. (2023) [93] East Midlands, England | DJI Mavic Pro RGB | Time of the flight: - Aerial Survey: Images had 75% overlap Altitude: 65 m GSD: 10 cm/pixel | Model: None Burial conditions: Forensic case looking for a missing child burial. Burial depth: - | DroneDeploy ArcMap (ESRI ArcGIS v.10.7) | Desktop survey; Metal detector (Compact Metal Detector, CEIA systems, Arezzo, Italy), Bulk ground conductivity survey (CMD Mini-explorer conductivity meter, GF Instruments, Brno, Czech Republic) and GPR (PulseEKKOTM 1000, Sensors & Software, Mississauga, ON, Canada) |
ST14 | Ruffell et al. (2023) [98] Europe * | DJI Mavic Pro 2 RGB | Time of the flight: - Aerial Survey: - Altitude: - GSD: - | Model: None Burial conditions: Unmarked burial in a park as part of a forensic case Burial depth: - | DroneDeploy | GPR (450 MHz, GuideLineGeo (Mala Geosciences) Solna, Sweden), ground probing, cadaver dogs |
ST15 | Alawadhi et al. (2024) [49] Jahra Pools Nature Reserve, Kuwait | Parrot Anafi RGB (21 MP Sony IMX230 1/2.422) (multirotor) Parrot Bluegrass Parrot Sequoia multispectral (multirotor) | Time of the flight: - Aerial Survey: - Altitude: 30 m GSD: 10 cm/pixel | Model: Sheep cadavers Burial conditions: G1—single control grave (50–60 cm); G2—shallow grave with a single sheep; G3—single deep (100–150 cm) grave; G4—deep grave with single sheep; G5—deep (150 cm) mass grave; G6—mass grave occupied with eight sheep. Burial depth: 30 cm, 40 cm, 60 cm, 80 cm, 150 cm | Pix4Dcapture (Pix4D version 4.6.4) ENVI (version 5.6, Exelis. Visual Information Solutions, L3 Harris Geospatial, Boulder, CO, USA) | – |
ST16 | Gaudio and Betto, (2024) [95] Costa d’Agra, Italy | Drone not specified | Time of the flight: - Aerial Survey: - Altitude: - GSD: - | Model: None Burial conditions: Missing WWI soldier unmarked burials Burial depth: - | – | – |
ST17 | Molina et al. (2024) [91] Site 1: Marengo Agricultural Center, Universidad Nacional de Colombia, Colombia Site 2: Barcelona Experimental Farm, the Universidad de Los Llanos, Colombia | DJI Matrice 300 Micasense Altum-PT multispectral sensor | Time of the flight: - Aerial Survey: Automatic 15 min flight plan, flightpath was at a NW–SE direction. Altitude: 70 m GSD: - | Model: Pig and human skeletal remains Burial conditions: Site 1: Donated human cadavers, pig bodies and forensic objects were buried in eight simulated graves with dimensions of 2 m × 2 m. Four burials were 0.8 m deep, and the other four burials were 1.2 m deep. Site 2: Donated human skeletons, pig bodies and forensic objects were buried in four simulated graves with dimensions of 0.7 m × 1.7 m, 0.5 m deep. Burial depth: 0.5 m, 0.8 m and 1.2 m | Pix4Dmapper (Pix4D version 4.6.4) | GPR (ProEx model 200 MHz and 600 MHz, Mala Geoscience, Mala, Sweden) and electrical resistivity surveys (GeoAmp 303 system, Subsuelo3D S.A.S, Bogotá, Colombia), bulk ground conductivity (CMD Mini-explorer conductivity meter, GF Instruments, Brno, Czech Republic) |
ST18 | Ruffell and Rocke, (2024) [96] Omagh Town, County Tyrone, Northern Ireland (Case study 2) | DJI Mavic Mini Pro 2 RGB | Time of the flight: - Aerial Survey: Autonomous flight Altitude: Low GSD: - | Model: Human burials Burial conditions: Unmarked human burials in the cemetery Burial depth: - | DroneDeploy | GPR (450-160 MHz, GuideLineGeo (Mala Geosciences) Solna, Sweden) |
ST19 | Syed Mohd Daud et al. (2024) [60] Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia | DJI Matrice 300 RTK Zenmuse H20T (Thermal camera) | Time of the flight: Between 9 a.m. to 11 a.m. Aerial Survey: Images were captured directly at 90 degrees above the rabbit carcasses Altitude: 15 m, 30 m, 60 m, 70 m, 80 m, 90 m and 100 m GSD: 1.333 cm/pixel at 15 m | Model: Rabbit carcasses Burial conditions: 24 rabbit cadavers, clothed and unclothed, were placed on the soil surface in cages; 3 live rabbits in cages were used as controls. Burial depth: Surface deposition | DJI Thermal Analysis Tool 3 software (DJI, Shenzen, China) | – |
3.2. Thematic Synthesis Findings
3.2.1. UAV Platforms and Sensor Technologies
3.2.2. Operational and Practical Considerations
3.2.3. Location of Graves in Relation to Burial Conditions and Environmental Constraints
3.2.4. Image Processing and AI Integration
3.2.5. Multidisciplinary Approaches
4. Discussion
4.1. Key Findings
4.2. Methodological Gaps
5. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
CAA | Civil Aviation Authority |
COVID | Coronavirus |
DJI | De-Jiang Innovations |
ERT | Electrical resistivity tomography |
FOV | Field of View |
GNDVI | Green Normalised Difference Vegetation Index |
GPR | Ground-penetrating radar |
GSD | Ground Sampling Distance |
HS | Hyperspectral |
LiDAR | Light Detection and Ranging |
MS | Multispectral |
NDRE | Normalised Difference Red Edge Index |
NDVI | Normalised Difference Vegetation Index |
NIR | Near Infra-Red |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
RGB | Red Green Blue |
RXD | Reed–Xiaoli Detector |
SfM | Structure-from-Motion |
SWIR | short-wave infrared |
TVDI | Temperature Vegetation Dryness Index |
UAS | Unmanned Aircraft Systems |
UAV | Unmanned Aerial Vehicle |
UK | United Kingdom |
USA | United States of America |
UTD | Unsupervised Target Detection |
VARI | Visible Atmospherically Resistant Index |
References
- Reale, K.; Beauregard, E. Body Recovery After the “First 48”: Implications for Sexual Homicide Investigations. Homicide Stud. 2019, 23, 126–144. [Google Scholar] [CrossRef]
- Carter, D.L. Homicide Process Mapping: Best Practices for Increasing Homicide Clearances; U.S. Department of Justice, Bureau of Justice Assistance: Washington, DC, USA, 2013.
- Beauregard, E.; Field, J. Body Disposal Patterns of Sexual Murderers: Implications for Offender Profiling. J. Police Crim. Psych. 2008, 23, 81–89. [Google Scholar] [CrossRef]
- Chai, A.M.M.; Beauregard, E.; Chopin, J. “Drop the Body”: Body Disposal Patterns in Sexual Homicide. Int. J. Offend. Ther. Comp. Criminol. 2021, 65, 692–714. [Google Scholar] [CrossRef] [PubMed]
- Barone, P.M.; Di Maggio, R.M. Forensic Geophysics: Ground Penetrating Radar (GPR) Techniques and Missing Persons Investigations. Forensic Sci. Res. 2019, 4, 337–340. [Google Scholar] [CrossRef]
- Booth, A.D.; Pringle, J.K. Semblance Analysis to Assess GPR Data from a Five-Year Forensic Study of Simulated Clandestine Graves. J. Appl. Geophys. 2016, 125, 37–44. [Google Scholar] [CrossRef]
- Van Schoor, M.; Coenraad Nienaber, W.; Marais-Werner, A. A Controlled Monitoring Study of Simulated Clandestine Graves Using 3D Ground Penetrating Radar. Near Surf. Geophys. 2017, 15, 274–284. [Google Scholar] [CrossRef]
- Berezowski, V.; Moffat, I.; Shendryk, Y.; MacGregor, D.; Ellis, J.; Mallett, X. A Multidisciplinary Approach to Locating Clandestine Gravesites in Cold Cases: Combining Geographic Profiling, LiDAR, and near Surface Geophysics. Forensic Sci. Int. Synerg. 2022, 5, 100281. [Google Scholar] [CrossRef]
- Colledge, D. A Review of Intrusive Search Methods and Excavation Techniques for Clandestine Grave Site Recovery in Forensic Archaeology. Master’s Thesis, Murdoch University, Perth, Australia, 2020. [Google Scholar]
- Dirkmaat, D.C.; Cabo, L.L. Forensic Archaeology and Forensic Taphonomy: Basic Considerations on How to Properly Process and Interpret the Outdoor Forensic Scene. Acad. Forensic Pathol. 2016, 6, 439–454. [Google Scholar] [CrossRef]
- Bartelink, E.J.; Milligan, C.F.; Colls, C.S. The Role of Forensic Archaeology in Missing Persons Investigations. In Handbook of Missing Persons; Morewitz, S.J., Sturdy Colls, C., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 271–294. ISBN 978-3-319-40199-7. [Google Scholar]
- Dupras, T.L.; Schultz, J.J.; Wheeler, S.M.; Williams, L.J. Search Techniques for Locating Human Remains. In Forensic Recovery of Human Remains: Archaeological Approaches; Taylor & Francis: London, UK, 2011. [Google Scholar]
- Larson, D.O.; Vass, A.A.; Wise, M. Advanced Scientific Methods and Procedures in the Forensic Investigation of Clandestine Graves. J. Contemp. Crim. Justice 2011, 27, 149–182. [Google Scholar] [CrossRef]
- Brabazon, H.; DeBruyn, J.M.; Lenaghan, S.C.; Li, F.; Mundorff, A.Z.; Steadman, D.W.; Stewart, C.N. Plants to Remotely Detect Human Decomposition? Trends Plant Sci. 2020, 25, 947–949. [Google Scholar] [CrossRef]
- Caccianiga, M.; Bottacin, S.; Cattaneo, C. Vegetation Dynamics as a Tool for Detecting Clandestine Graves. J. Forensic Sci. 2012, 57, 983–988. [Google Scholar] [CrossRef] [PubMed]
- Watson, C.J.; Forbes, S.L. An Investigation of the Vegetation Associated with Grave Sites in Southern Ontario. Can. Soc. Forensic Sci. J. 2008, 41, 199–207. [Google Scholar] [CrossRef]
- Schuetter, J.; Goel, P.; McCorriston, J.; Park, J.; Senn, M.; Harrower, M. Autodetection of Ancient Arabian Tombs in High-Resolution Satellite Imagery. Int. J. Remote Sens. 2013, 34, 6611–6635. [Google Scholar] [CrossRef]
- Lunga, D.; Dhamdhere, R.; Walters, S.; Bragg, L.; Makkar, N.; Urban, M. Learning to Count Grave Sites for Cemetery Observation Models With Satellite Imagery. IEEE Geosci. Remote Sens. Lett. 2022, 19, 3000405. [Google Scholar] [CrossRef]
- Ruffell, A.; McCabe, A.; Donnelly, C.; Sloan, B. Location and Assessment of an Historic (150–160 Years Old) Mass Grave Using Geographic and Ground Penetrating Radar Investigation, NW Ireland. J. Forensic Sci. 2009, 54, 382–394. [Google Scholar] [CrossRef] [PubMed]
- Snirer, E. Hyperspectral Remote Sensing of Individual Gravesites –Exploring the Effects of Cadaver Decomposition on Vegetation and Soil Spectra. Master’s Thesis, McGill University, Montreal, QC, Canada, 2013. [Google Scholar]
- Leblanc, G.; Kalacska, M.; Soffer, R. Detection of Single Graves by Airborne Hyperspectral Imaging. Forensic Sci. Int. 2014, 245, 17–23. [Google Scholar] [CrossRef]
- Kalacska, M.E.; Bell, L.S.; Arturo Sanchez-Azofeifa, G.; Caelli, T. The Application of Remote Sensing for Detecting Mass Graves: An Experimental Animal Case Study from Costa Rica. J. Forensic Sci. 2009, 54, 159–166. [Google Scholar] [CrossRef]
- Servello, J.A. Thermal Identification of Clandestine Burials: A Signature Analysis and Image Classification Approach. Master’s Thesis, University of North Texas, Denton, TX, USA, 2010. [Google Scholar]
- Kalacska, M.; Bell, L.S. Remote Sensing as a Tool for the Detection of Clandestine Mass Graves. Can. Soc. Forensic Sci. 2006, 39, 1–13. [Google Scholar] [CrossRef]
- DesMarais, A.M. Detection of Cadaveric Remains by Thermal Imaging Cameras. J. Forensic Identif. 2014, 64, 489–512. [Google Scholar]
- Dozal, L.; Silván-Cárdenas, J.L.; Moctezuma, D.; Siordia, O.S.; Naredo, E. Evolutionary Approach for Detection of Buried Remains Using Hyperspectral Images. Photogramm. Eng. Remote Sens. 2018, 84, 435–450. [Google Scholar] [CrossRef]
- L3Harris Technologies, Inc. WESCAM MXTM-Series L3Harris® Fast. Forward. Available online: https://www.l3harris.com/all-capabilities/wescam-mx-series (accessed on 11 September 2025).
- Kruse, F.A.; Boardman, J.W.; Lefkoff, A.B.; Young, J.M.; Kierein-Young, K.S. HyMap: An Australian Hyperspectral Sensor Solving Global Problems-Results from USA HyMap Data Acquisitions. In Proceedings of the 10th Australasian Remote Sensing and Photogrammetry Conference, Adelaide, Australia, 25 August 2020; pp. 18–23. [Google Scholar]
- Watts, A.C.; Ambrosia, V.G.; Hinkley, E.A. Unmanned Aircraft Systems in Remote Sensing and Scientific Research: Classification and Considerations of Use. Remote Sens. 2012, 4, 1671–1692. [Google Scholar] [CrossRef]
- Carrivick, J.L.; Smith, M.W.; Quincey, D.J.; Carver, S.J. Developments in Budget Remote Sensing for the Geosciences. Geol. Today 2013, 29, 138–143. [Google Scholar] [CrossRef]
- Silván-Cárdenas, J.L.; Caccavari-Garza, A.; Quinto-Sánchez, M.E.; Madrigal-Gómez, J.M.; Coronado-Juárez, E.; Quiroz-Suarez, D. Assessing Optical Remote Sensing for Grave Detection. Forensic Sci. Int. 2021, 329, 111064. [Google Scholar] [CrossRef]
- Tuśnio, N.; Wróblewski, W. The Efficiency of Drones Usage for Safety and Rescue Operations in an Open Area: A Case from Poland. Sustainability 2022, 14, 327. [Google Scholar] [CrossRef]
- Hafeez, A.; Tiwari, V.; Verma, V.K.; Ansari, A.S.; Husain, M.A.; Singh, S.P.; Khan, A.N. Crop Monitoring and Automatic Weed Detection Using Drone. In Proceedings of the 2021 International Conference on Control, Automation, Power and Signal Processing (CAPS), Jabalpur, India, 10–12 December 2021; pp. 1–4. [Google Scholar]
- Chin, R.; Catal, C.; Kassahun, A. Plant Disease Detection Using Drones in Precision Agriculture. Precis. Agric. 2023, 24, 1663–1682. [Google Scholar] [CrossRef]
- Moon, H.; Lee, W. An Online-Based Visual Framework of 3D Positioning Data with Wireless Signal for Buried Persons. In Disaster Management and Human Health Risk V; Brebbia, C.A., Ed.; WIT Press: Southampton, UK, 2017; pp. 55–66. [Google Scholar]
- Mishra, B.; Garg, D.; Narang, P.; Mishra, V. Drone-Surveillance for Search and Rescue in Natural Disaster. Comput. Commun. 2020, 156, 1–10. [Google Scholar] [CrossRef]
- Uribe, P.; Angás, J.; Romeo, F.; Pérez-Cabello, F.; Santamaría, D. Mapping Ancient Battlefields in a Multi-Scalar Approach Combining Drone Imagery and Geophysical Surveys: The Roman Siege of the Oppidum of Cabezo de Alcalá (Azaila, Spain). J. Cult. Herit. 2021, 48, 11–23. [Google Scholar] [CrossRef]
- Stal, C.; Covataru, C.; Müller, J.; Parnic, V.; Ignat, T.; Hofmann, R.; Lazar, C. Supporting Long-Term Archaeological Research in Southern Romania Chalcolithic Sites Using Multi-Platform UAV Mapping. Drones 2022, 6, 277. [Google Scholar] [CrossRef]
- Zailani, M.A.; Azma, R.Z.; Aniza, I.; Rahana, A.R.; Ismail, M.S.; Shahnaz, I.S.; Chan, K.S.; Jamaludin, M.; Mahdy, Z.A. Drone versus Ambulance for Blood Products Transportation: An Economic Evaluation Study. BMC Health Serv. Res. 2021, 21, 1308. [Google Scholar] [CrossRef] [PubMed]
- Lijcklama à Nijeholt, L.; Kronshorst, T.Y.; van Teeffelen, K.; van Manen, B.; Emaus, R.; Knotter, J.; Mersha, A. Utilizing Drone-Based Ground-Penetrating Radar for Crime Investigations in Localizing and Identifying Clandestine Graves. Sensors 2023, 23, 7119. [Google Scholar] [CrossRef]
- Georgiou, A.; Masters, P.; Johnson, S.; Feetham, L. UAV-Assisted Real-Time Evidence Detection in Outdoor Crime Scene Investigations. J. Forensic Sci. 2022, 67, 1221–1232. [Google Scholar] [CrossRef] [PubMed]
- Engberts, B.; Gillissen, E. Policing from Above: Drone Use by the Police. In The Future of Drone Use: Opportunities and Threats from Ethical and Legal Perspectives; Custers, B., Ed.; T.M.C. Asser Press: The Hague, The Netherlands, 2016; pp. 93–113. ISBN 978-94-6265-132-6. [Google Scholar]
- Edelman, G.J.; Aalders, M.C. Photogrammetry Using Visible, Infrared, Hyperspectral and Thermal Imaging of Crime Scenes. Forensic Sci. Int. 2018, 292, 181–189. [Google Scholar] [CrossRef]
- Varshosaz, M.; Sajadian, M.; Pirasteh, S.; Moghimi, A. Automated Two-Step Seamline Detection for Generating Large-Scale Orthophoto Mosaics from Drone Images. Remote Sens. 2024, 16, 903. [Google Scholar] [CrossRef]
- Gherga, B.; Timbota, O.; Bertici, R.; Popescu, G.; Herbei, M.V. Methods for Generating the Digital Terrain Model, Digital Surface Model and Orthomosaic Using UAV and Gnss Technology. Res. J. Agric. Sci. 2020, 52, 32–42. [Google Scholar]
- Assmann, J.J.; Kerby, J.T.; Cunliffe, A.M.; Myers-Smith, I.H. Vegetation Monitoring Using Multispectral Sensors—Best Practices and Lessons Learned from High Latitudes. J. Unmanned Veh. Sys. 2019, 7, 54–75. [Google Scholar] [CrossRef]
- Tian, F.; Zhou, J.; Ransom, C.J.; Aloysius, N.; Sudduth, K.A. Estimating Corn Leaf Chlorophyll Content Using Airborne Multispectral Imagery and Machine Learning. Smart Agric. Technol. 2025, 10, 100719. [Google Scholar] [CrossRef]
- Ram, B.G.; Oduor, P.; Igathinathane, C.; Howatt, K.; Sun, X. A Systematic Review of Hyperspectral Imaging in Precision Agriculture: Analysis of Its Current State and Future Prospects. Comput. Electron. Agric. 2024, 222, 109037. [Google Scholar] [CrossRef]
- Alawadhi, A.; Eliopoulos, C.; Bezombes, F. Temporal Monitoring of Simulated Burials in an Arid Environment Using RGB/Multispectral Sensor Unmanned Aerial Vehicles. Drones 2024, 8, 444. [Google Scholar] [CrossRef]
- Murray, B.; Anderson, D.T.; Wescott, D.J.; Moorhead, R.; Anderson, M.F. Survey and Insights into Unmanned Aerial-Vehicle-Based Detection and Documentation of Clandestine Graves and Human Remains. Hum. Biol. 2018, 90, 45. [Google Scholar] [CrossRef]
- Rogalski, A.; Chrzanowski, K. Infrared devices and techniques. Opto-Electron. Rev. 2002, 10, 111–136. [Google Scholar]
- Redana, M.; Lancaster, L.T.; Chong, X.Y.; Lip, Y.Y.; and Gibbins, C. An Open-Source Method for Producing Reliable Water Temperature Maps for Ecological Applications Using Non-Radiometric Sensors. Remote Sens. Appl. Soc. Environ. 2024, 34, 101184. [Google Scholar] [CrossRef]
- Ribeiro-Gomes, K.; Hernández-López, D.; Ortega, J.F.; Ballesteros, R.; Poblete, T.; Moreno, M.A. Uncooled Thermal Camera Calibration and Optimization of the Photogrammetry Process for UAV Applications in Agriculture. Sensors 2017, 17, 2173. [Google Scholar] [CrossRef] [PubMed]
- Wan, Q.; Smigaj, M.; Brede, B.; Kooistra, L. Optimizing UAV-Based Uncooled Thermal Cameras in Field Conditions for Precision Agriculture. Int. J. Appl. Earth Obs. Geoinf. 2024, 134, 104184. [Google Scholar] [CrossRef]
- Hollesen, J.; Jepsen, M.S.; Harmsen, H. The Application of RGB, Multispectral, and Thermal Imagery to Document and Monitor Archaeological Sites in the Arctic: A Case Study from South Greenland. Drones 2023, 7, 115. [Google Scholar] [CrossRef]
- Thomas, H.; Williams, E. High Resolution Terrestrial Thermography of Archaeological Sites. Archaeol. Prospect. 2019, 26, 189–198. [Google Scholar] [CrossRef]
- Alawadhi, A.; Eliopoulos, C.; Bezombes, F. The Detection of Clandestine Graves in an Arid Environment Using Thermal Imaging Deployed from an Unmanned Aerial Vehicle. J. Forensic Sci. 2023, 68, 1286–1291. [Google Scholar] [CrossRef]
- Butters, O.; Krosch, M.N.; Roberts, M.; MacGregor, D. Application of Forward-Looking Infrared (FLIR) Imaging from an Unmanned Aerial Platform in the Search for Decomposing Remains. J. Forensic Sci. 2021, 66, 347–355. [Google Scholar] [CrossRef]
- Bodnar, S.R.; Ciotti, J.; Soroka, J.; Larsen, R.A.; Sprague, J.E. Drone-Assisted Thermal Imaging to Determine the Location of Unmarked Graves. J. Forensic Identif. 2019, 69, 378. [Google Scholar]
- Syed Mohd Daud, S.M.; Heo, C.C.; Mohd Yusof, M.Y.P.; Khoo, L.S.; Chainchel Singh, M.K.; Mahmood, M.S.; Bin Muhammad Nasir, M.D.; Nawawi, H. Use of Thermal Drone in Detection and Assessment of Larval Mass Temperature in Decomposed Rabbit Carcasses. J. Forensic Sci. 2024, 69, 542–553. [Google Scholar] [CrossRef] [PubMed]
- Maes, W.H.; Huete, A.R.; Steppe, K. Optimizing the Processing of UAV-Based Thermal Imagery. Remote Sens. 2017, 9, 476. [Google Scholar] [CrossRef]
- Sheng, H.; Chao, H.; Coopmans, C.; Han, J.; McKee, M.; Chen, Y. Low-Cost UAV-Based Thermal Infrared Remote Sensing: Platform, Calibration and Applications. In Proceedings of the 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, Qingdao, China, 15–17 July 2010; pp. 38–43. [Google Scholar]
- Verhoeven, G.J. The Reflection of Two Fields—Electromagnetic Radiation and Its Role in (Aerial) Imaging. AARGnews 2017, 55, 10–18. [Google Scholar] [CrossRef]
- Spera, S.A.; Franklin, M.S.; Zizzamia, E.A.; Smith, R.K. Recovering a Black Cemetery: Automatead Mapping of Hidden Gravesites Using an sUAV and GIS in East End Cemetery, Richmond, VA. Int. J. Hist. Archaeol. 2022, 26, 1110–1131. [Google Scholar] [CrossRef]
- van Tassel, C. Defining the True Cost Behind Implementing Lidar Systems into Your Business. Available online: https://candrone.com/blogs/news/the-real-cost-of-starting-a-lidar-drone-business (accessed on 6 September 2025).
- Wang, C.; Yang, X.; Xi, X.; Nie, S.; Dong, P. Introduction to LiDAR Remote Sensing, 1st ed.; CRC Press: Boca Raton, FL, USA, 2024; ISBN 978-1-032-67151-2. [Google Scholar]
- DJI Store Buy DJI Matrice 400 Flagship Enterprise Drone Platform. Available online: https://store.dji.com/uk/product/dji-matrice-400-worry-free-plus-combo (accessed on 6 September 2025).
- Leica Geosystems BLK2FLY Leica Geosystems. Available online: https://shop.leica-geosystems.com/gb/leica-blk/blk2fly/overview?c1=GAW_SE_NW&source=UK_RC_BRND&kw=hexagon_drone&utm_source=google&utm_medium=cpc&utm_term=hexagon_drone&utm_campaign=UK__-__Reality_Capture__-__Branded&cr5=635087020448&cr7=c&gad_source=1&gad_campaignid=18928709729&gbraid=0AAAAADnuiFiKCyK5EDZDI5yN-u9hHL4Ry&gclid=CjwKCAjwt-_FBhBzEiwA7QEqyC4x7nyf8sHQJdwiPRU6yr-5c07qqpxjsBwmUjgpyvPcw5Itb9FSrBoCLx0QAvD_BwE (accessed on 6 September 2025).
- Parrott, E.; Panter, H.; Morrissey, J.; Bezombes, F. A Low Cost Approach to Disturbed Soil Detection Using Low Altitude Digital Imagery from an Unmanned Aerial Vehicle. Drones 2019, 3, 50. [Google Scholar] [CrossRef]
- DJI Store Buy DJI Mavic 3E Worry-Free Basic Combo. Available online: https://store.dji.com/uk/product/dji-mavic-3e-and-dji-care-enterprise-basic (accessed on 6 September 2025).
- Pertsev, R.; Tychyna, D.; Goz, S. The Use of Unmanned Aerial Vehicles (UAV/Drone) in Scene Investigations. J. Forensic Identif. 2024, 74, 168–178. [Google Scholar]
- Bucknell, A.; Bassindale, T. An Investigation into the Effect of Surveillance Drones on Textile Evidence at Crime Scenes. Sci. Justice 2017, 57, 373–375. [Google Scholar] [CrossRef]
- Urbanová, P.; Jurda, M.; Vojtíšek, T.; Krajsa, J. Using Drone-Mounted Cameras for on-Site Body Documentation: 3D Mapping and Active Survey. Forensic Sci. Int. 2017, 281, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Abate, D.; Sturdy Colls, C.; Moyssi, N.; Karsili, D.; Faka, M.; Anilir, A.; Manolis, S. Optimizing Search Strategies in Mass Grave Location through the Combination of Digital Technologies. Forensic Sci. Int. Synerg. 2019, 1, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Silván-Cárdenas, J.L.; Corona-Romero, N.; Madrigal-Gómez, J.M.; Saavedra-Guerrero, A.; Cortés-Villafranco, T.; Coronado-Juárez, E. On the Detectability of Buried Remains with Hyperspectral Measurements. In Pattern Recognition. MCPR 2017. Lecture Notes in Computer Science; Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 10267, pp. 201–212. [Google Scholar]
- Mohd Sabri, N.E.; Chainchel Singh, M.K.; Mahmood, M.S.; Khoo, L.S.; Mohd Yusof, M.Y.P.; Heo, C.C.; Muhammad Nasir, M.D.; Nawawi, H. A Scoping Review on Drone Technology Applications in Forensic Science. SN Appl. Sci. 2023, 5, 233. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Lehmann, J.R.K.; Smithson, K.Z.; Prinz, T. Making the Invisible Visible: Using UAS-Based High-Resolution Color-Infrared Imagery to Identify Buried Medieval Monastery Walls. J. Unmanned Veh. Sys. 2015, 3, 58–67. [Google Scholar] [CrossRef]
- Danilov, A.S.; Smirnov, U.D.; Pashkevich, M.A. The System of the Ecological Monitoring of Environment Which Is Based on the Usage of UAV. Russ. J. Ecol. 2015, 46, 14–19. [Google Scholar] [CrossRef]
- Mahajan, U.; Bundel, B.R. Drones for Normalized Difference Vegetation Index (NDVI), to Estimate Crop Health for Precision Agriculture: A Cheaper Alternative for Spatial Satellite Sensors. In Proceedings of the International Conference on Innovative Research in Agriculture, Food Science, Forestry, Horticulture, Aquaculture, Animal Sciences, Biodiversity, Ecological Sciences and Climate Change (AFHABEC-2016), Delhi, India, 10 July 2016; pp. 38–41. [Google Scholar]
- Moon, H.; Kim, C.; Lee, W. A UAV Based 3-D Positioning Framework for Detecting Locations of Buried Persons in Collapsed Disaster Area. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 121–124. [Google Scholar] [CrossRef]
- Horsman, G. Unmanned Aerial Vehicles: A Preliminary Analysis of Forensic Challenges. Digit. Investig. 2016, 16, 1–11. [Google Scholar] [CrossRef]
- Civil Aviation Authority Specific Category Overview. Available online: https://www.caa.co.uk/drones/specific-category/specific-category-overview/ (accessed on 17 July 2025).
- RPAS—SACAA Unmanned Aircraft Systems. Available online: https://www.caa.co.za/industry-information/uas/ (accessed on 17 July 2025).
- Office of the Federal Register. U.S. Government Publishing Office 14 CFR Part 107—Small Unmanned Aircraft Systems. Available online: https://www.ecfr.gov/current/title-14/part-107 (accessed on 17 July 2025).
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R Package and Shiny App for Producing PRISMA 2020-compliant Flow Diagrams, with Interactivity for Optimised Digital Transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef]
- Naeem, M.; Ozuem, W.; Howell, K.; Ranfagni, S. A Step-by-Step Process of Thematic Analysis to Develop a Conceptual Model in Qualitative Research. Int. J. Qual. 2023, 22, 16094069231205789. [Google Scholar] [CrossRef]
- Christou, P.A. How to Use Thematic Analysis in Qualitative Research. J. Qual. Res. Tour. 2022, 3, 79–95. [Google Scholar] [CrossRef]
- Blau, S.; Sterenberg, J.; Weeden, P.; Urzedo, F.; Wright, R.; Watson, C. Exploring Non-Invasive Approaches to Assist in the Detection of Clandestine Human Burials: Developing a Way Forward. Forensic Sci. Res. 2018, 3, 320–342. [Google Scholar] [CrossRef] [PubMed]
- Molina, C.M.; Wisniewski, K.; Heaton, V.; Pringle, J.K.; Avila, E.F.; Herrera, L.A.; Guerrero, J.; Saumett, M.; Echeverry, R.; Duarte, M.; et al. Monitoring of Simulated Clandestine Graves of Dismembered Victims Using UAVs, Electrical Tomography, and GPR over One Year to Aid Investigations of Human Rights Violations in Colombia, South America. J. Forensic Sci. 2022, 67, 1060–1071. [Google Scholar] [CrossRef]
- Molina, C.M.; Wisniewski, K.D.; Salamanca, A.; Saumett, M.; Rojas, C.; Gómez, H.; Baena, A.; Pringle, J.K. Monitoring of Simulated Clandestine Graves of Victims Using UAVs, GPR, Electrical Tomography and Conductivity over 4-8 Years Post-Burial to Aid Forensic Search Investigators in Colombia, South America. Forensic Sci. Int. 2024, 355, 111919. [Google Scholar] [CrossRef]
- Evers, R.; Masters, P. The Application of Low-Altitude near-Infrared Aerial Photography for Detecting Clandestine Burials Using a UAV and Low-Cost Unmodified Digital Camera. Forensic Sci. Int. 2018, 289, 408–418. [Google Scholar] [CrossRef]
- Pringle, J.K.; Ruffell, A.; Wisniewski, K.D.; Davenward, B.; Heaton, V.; Hobson, L. Historic Child Homicide Burial Search in Rural Woodland. Forensic Sci. Int. Rep. 2023, 8, 100324. [Google Scholar] [CrossRef]
- Rocke, B.; Ruffell, A. Detection of Single Burials Using Multispectral Drone Data: Three Case Studies. Forensic Sci. 2022, 2, 72–87. [Google Scholar] [CrossRef]
- Gaudio, D.; Betto, A. A Case Study on the Endeavour to Identify the “Unidentifiable” Fallen Soldiers of WWI on the Italian Front. Forensic Sci. Res. 2024, 9, owae037. [Google Scholar] [CrossRef] [PubMed]
- Ruffell, A.; Rocke, B. Combined Use of Drones and Geophysics in Enhancing Cemetery Studies: Two Case Studies in Northern Ireland, UK. Archaeol. Prospect. 2024, 31, 299–306. [Google Scholar] [CrossRef]
- Rocke, B.; Ruffell, A.; Donnelly, L. Drone Aerial Imagery for the Simulation of a Neonate Burial Based on the Geoforensic Search Strategy (GSS). J. Forensic Sci. 2021, 66, 1506–1519. [Google Scholar] [CrossRef]
- Ruffell, A.; Rocke, B.; Powell, N. Geoforensic Search to Crime Scene: Remote Sensing, Geophysics, and Dogs. J. Forensic Sci. 2023, 68, 1379–1385. [Google Scholar] [CrossRef] [PubMed]
- DroneDeploy DroneDeploy: Unified Reality Capture Platform. Available online: https://www.dronedeploy.com (accessed on 9 September 2025).
- Bisker, C.; Taylor, G.; Carney, H.; Orr, C.H.; Javan, G.T.; Ralebitso-Senior, T.K. Comparative Soil Bacterial Metabarcoding after Aboveground vs. Subsurface Decomposition of Mus Musculus. Sci. Rep. 2024, 14, 31179. [Google Scholar] [CrossRef]
- Barone, P.M.; Matsentidi, D.; Mollard, A.; Kulengowska, N.; Mistry, M. Mapping Decomposition: A Preliminary Study of Non-Destructive Detection of Simulated Body Fluids in the Shallow Subsurface. Forensic Sci. 2022, 2, 620–634. [Google Scholar] [CrossRef]
- Mann, R.W.; Bass, W.M.; Meadows, L. Time since Death and Decomposition of the Human Body: Variables and Observations in Case and Experimental Field Studies. J. Forensic Sci. 1990, 35, 103–111. [Google Scholar] [CrossRef]
- Turner, B.; Wiltshire, P. Experimental Validation of Forensic Evidence: A Study of the Decomposition of Buried Pigs in a Heavy Clay Soil. Forensic Sci. Int. 1999, 101, 113–122. [Google Scholar] [CrossRef]
- Brown, K.M.; Keppel, R.D. Child Abduction Murder: The Impact of Forensic Evidence on Solvability. J. Forensic Sci. 2012, 57, 353–363. [Google Scholar] [CrossRef]
- Byard, R.W. Concealed Homicides—A Postmortem Study and Review. Am. J. Forensic Med. Pathol. 2024, 45, 20–25. [Google Scholar] [CrossRef]
- Schotsmans, E.M.J.; Van De Voorde, W.; De Winne, J.; Wilson, A.S. The Impact of Shallow Burial on Differential Decomposition to the Body: A Temperate Case Study. Forensic Sci. Int. 2011, 206, e43–e48. [Google Scholar] [CrossRef]
- Shapiro, E. Man Apologizes as He’s Sentenced to Life in Prison for Mackenzie Lueck Slaying. ABC News. 2020. Available online: https://abcnews.go.com/US/man-apologizes-sentenced-life-prison-mackenzie-lueck-slaying/story?id=73792792 (accessed on 7 March 2025).
- Manhein, M.H. Decomposition Rates of Deliberate Burials: A Case Study of Preservation. In Forensic Taphonomy; CRC Press: Boca Raton, FL, USA, 1996; pp. 469–482. [Google Scholar]
- Congram, D.; Green, A.G.; Seferian, P.P. Manual of Forensic Taphonomy; CRC Press: New York, NY, USA, 2021. [Google Scholar]
- Miles, K.L.; Finaughty, D.A.; Gibbon, V.E. A Review of Experimental Design in Forensic Taphonomy: Moving Towards Forensic Realism. Forensic Sci. Res. 2020, 5, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Matuszewski, S.; Hall, M.J.R.; Moreau, G.; Schoenly, K.G.; Tarone, A.M.; Villet, M.H. Pigs vs People: The Use of Pigs as Analogues for Humans in Forensic Entomology and Taphonomy Research. Int. J. Leg. Med. 2020, 134, 793–810. [Google Scholar] [CrossRef] [PubMed]
- Ballarin, M.; Balletti, C.; Guerra, F. Action Cameras and Low-Cost Aerial Vehicles in Archaeology. In Proceedings of the Videometrics, Range Imaging, and Applications XIII, Munich, Germany, 21 June 2015; SPIE: St. Bellingham, WA, USA, 2015; Volume 9528, pp. 343–357. [Google Scholar] [CrossRef]
- Hamilton, S.; Stephenson, J. Testing UAV (Drone) Aerial Photography and Photogrammetry for Archaeology; Lakehead University: Thunder Bay, ON, Canada, 2016. [Google Scholar]
- Khofiyah, N.A.; Sutopo, W.; Ardiansyah, R. Global Business Strategy for Commercializing a Technology of Drone: A Lesson Learned from DJI Drones and Parrot Drones. In Proceedings of the 5th NA International Conference on Industrial Engineering and Operations Management, Detroit, MI, USA, 10–14 August 2020; pp. 1014–1025. [Google Scholar]
- Wich, S.A.; Hudson, M.; Andrianandrasana, H.; Longmore, S.N. Drones for Conservation. In Conservation Technology; Oxford University Press: Oxford, UK, 2021. [Google Scholar]
- Rahman, D.A.; Sitorus, A.B.Y.; Condro, A.A. From Coastal to Montane Forest Ecosystems, Using Drones for Multi-Species Research in the Tropics. Drones 2022, 6, 6. [Google Scholar] [CrossRef]
- Royo, P.; Asenjo, À.; Trujillo, J.; Çetin, E.; Barrado, C. Enhancing Drones for Law Enforcement and Capacity Monitoring at Open Large Events. Drones 2022, 6, 359. [Google Scholar] [CrossRef]
- Paul, A. Police Use of Data from the Sky: Dissecting the Human Rights Implications Associated with Deploying Unmanned Aerial Vehicles (UAVs) in Law Enforcement in England and Wales. Ph.D. Thesis, Northumbria University, Newcastle upon Tyne, UK, 2024. [Google Scholar]
- Watson, C.J.; Ueland, M.; Schotsmans, E.M.J.; Sterenberg, J.; Forbes, S.L.; Blau, S. Detecting Grave Sites from Surface Anomalies: A Longitudinal Study in an Australian Woodland. J. Forensic Sci. 2021, 66, 479–490. [Google Scholar] [CrossRef]
- Forbes, S.L.; Troobnikoff, A.N.; Ueland, M.; Nizio, K.D.; Perrault, K.A. Profiling the Decomposition Odour at the Grave Surface before and after Probing. Forensic Sci. Int. 2016, 259, 193–199. [Google Scholar] [CrossRef]
- Carter, G.A. Responses of Leaf Spectral Reflectance to Plant Stress. Am. J. Bot. 1993, 80, 239–243. [Google Scholar] [CrossRef]
- Cholewa, M.; Bonar, M.; Kadej, M. Can Plants Indicate Where a Corpse Is Buried? Effects of Buried Animal Tissues on Plant Chemistry: Preliminary Study. Forensic Sci. Int. 2022, 333, 111208. [Google Scholar] [CrossRef]
- Verhoef, A. Remote Estimation of Thermal Inertia and Soil Heat Flux for Bare Soil. Agric. For. Meteorol. 2004, 123, 221–236. [Google Scholar] [CrossRef]
- Forbes, S.L.; Stuart, B.H.; Dent, B.B. The Effect of the Method of Burial on Adipocere Formation. Forensic Sci. Int. 2005, 154, 44–52. [Google Scholar] [CrossRef]
- Lee, M.J.; Voss, S.C.; Franklin, D.; Dadour, I.R. Preliminary Investigation of Aircraft Mounted Thermal Imaging to Locate Decomposing Remains via the Heat Produced by Larval Aggregations. Forensic Sci. Int. 2018, 289, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.M.; Levin, E.A. A Crisis for the Future of Forensic Science: Lessons from the UK of the Importance of Epistemology for Funding Research and Development. Forensic Sci. Int. Synerg. 2019, 1, 243–252. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, L. A Review on Unmanned Aerial Vehicle Remote Sensing: Platforms, Sensors, Data Processing Methods, and Applications. Drones 2023, 7, 398. [Google Scholar] [CrossRef]
- O’Connor, J.; Smith, M.J.; James, M.R. Cameras and Settings for Aerial Surveys in the Geosciences: Optimising Image Data. Prog. Phys. Geogr. 2017, 41, 325–344. [Google Scholar] [CrossRef]
- Maes, W.H. Practical Guidelines for Performing UAV Mapping Flights with Snapshot Sensors. Remote Sens. 2025, 17, 606. [Google Scholar] [CrossRef]
- Duffy, J.P.; Cunliffe, A.M.; DeBell, L.; Sandbrook, C.; Wich, S.A.; Shutler, J.D.; Myers-Smith, I.H.; Varela, M.R.; Anderson, K. Location, Location, Location: Considerations When Using Lightweight Drones in Challenging Environments. Remote Sens. Ecol. Conserv. 2018, 4, 7–19. [Google Scholar] [CrossRef]
- Mesas-Carrascosa, F.-J.; Notario García, M.D.; Meroño de Larriva, J.E.; García-Ferrer, A. An Analysis of the Influence of Flight Parameters in the Generation of Unmanned Aerial Vehicle (UAV) Orthomosaicks to Survey Archaeological Areas. Sensors 2016, 16, 1838. [Google Scholar] [CrossRef]
- Oostra, R.-J.; Gelderman, T.; Groen, W.J.M.; Uiterdijk, H.G.; Cammeraat, E.L.H.; Krap, T.; Wilk, L.S.; Lüschen, M.; Morriën, W.E.; Wobben, F.; et al. Amsterdam Research Initiative for Sub-Surface Taphonomy and Anthropology (ARISTA)—A Taphonomic Research Facility in the Netherlands for the Study of Human Remains. Forensic Sci. Int. 2020, 317, 110483. [Google Scholar] [CrossRef]
- Clayden, A.; Green, T.; Hockey, J.; Powell, M. Cutting the Lawn − Natural Burial and Its Contribution to the Delivery of Ecosystem Services in Urban Cemeteries. Urban For. Urban Green. 2018, 33, 99–106. [Google Scholar] [CrossRef]
- Fiedler, S.; Graw, M. Decomposition of Buried Corpses, with Special Reference to the Formation of Adipocere. Naturwissenschaften 2003, 90, 291–300. [Google Scholar] [CrossRef]
- Voss, S.C.; Cook, D.F.; Dadour, I.R. Decomposition and Insect Succession of Clothed and Unclothed Carcasses in Western Australia. Forensic Sci. Int. 2011, 211, 67–75. [Google Scholar] [CrossRef]
- Matuszewski, S.; Konwerski, S.; Frątczak, K.; Szafałowicz, M. Effect of Body Mass and Clothing on Decomposition of Pig Carcasses. Int. J. Leg. Med. 2014, 128, 1039–1048. [Google Scholar] [CrossRef] [PubMed]
- Pringle, J.K.; Stimpson, I.G.; Wisniewski, K.D.; Heaton, V.; Davenward, B.; Mirosch, N.; Spencer, F.; Jervis, J.R. Geophysical Monitoring of Simulated Homicide Burials for Forensic Investigations. Sci. Rep. 2020, 10, 7544. [Google Scholar] [CrossRef] [PubMed]
- Teo, C.H.; Hing, H.L.; Hamzah, N.H.; Hamzah, S.P.A.A. The Effect of Different Coverings on Total Body Score Development of Buried Carcasses. Malays. J. Med. Sci. 2021, 28, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Mansegosa, D.A.; Giannotti, P.S.; Marchiori, J.I.; Jofré, F.N.; Aballay, F.H.; Fernandez Aisa, C. The Story of a Homicide: The Location, Exhumation, and Multidisciplinary Analysis of a Clandestine Burial. Forensic Sci. Int. Rep. 2021, 3, 100165. [Google Scholar] [CrossRef]
- Pettorelli, N. The Normalized Difference Vegetation Index; OUP Oxford: Oxford, UK, 2013; ISBN 978-0-19-969316-0. [Google Scholar]
- González, C.L.; Paredes, L.V.; Naufal, C.; Ojeda-Caicedo, V.V.; Marrugo, A.G.; Solano-Correa, Y.T. Flight Mission Planning Methodology in UAV Surveying. In Proceedings of the 2024 XVIII National Meeting on Optics and the IX Andean and Caribbean Conference on Optics and its Applications (ENO-CANCOA), Cartagena, Colombia, 12–14 June 2024; pp. 1–6. [Google Scholar]
- Pix4D Professional Photogrammetry and Drone Mapping Software. Available online: https://www.pix4d.com/ (accessed on 9 September 2025).
- ENVI. ENVI Remote Sensing Software for Image Processing & Analysis. Available online: https://www.nv5geospatialsoftware.com/Products/ENVI (accessed on 9 September 2025).
- Basener, W.F.; Messinger, D.W. Enhanced Detection and Visualization of Anomalies in Spectral Imagery. In Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XV, Orlando, FL, USA, 27 April 2009; SPIE: St. Bellingham, WA, USA, 2009; Volume 7334, pp. 621–630. [Google Scholar]
- The MathWorks, Inc. MATLAB. Available online: https://uk.mathworks.com/products/matlab.html (accessed on 9 September 2025).
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 779–788. [Google Scholar]
- Reed, I.S.; Yu, X. Adaptive Multiple-Band CFAR Detection of an Optical Pattern with Unknown Spectral Distribution. IEEE Trans. Acoust., Speech Signal Process. 1990, 38, 1760–1770. [Google Scholar] [CrossRef]
- Chang, C.I.; Chiang, S.S. Anomaly Detection and Classification for Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1314–1325. [Google Scholar] [CrossRef]
- Bramble, J.; Lydon, D. Benefits and Barriers: An Exploratory Study of Drone Use and LiDAR Technology Application in UK Policing. Int. J. Police Sci. Manag. 2025, 27, 303–312. [Google Scholar] [CrossRef]
- White, J. Use of Unmanned Aerial Vehicles to Identify Topsoil Characteristics Associated with Clandestine Graves and Buried Weapon Caches. Master’s Thesis, Murdoch University, Perth, Australia, 2022. [Google Scholar]
- Price, N. Identification of Clandestine Grave Sites by Understanding Location Choices from an Environmental and Psychological Perspective. Master’s Thesis, Murdoch University, Perth, Australia, 2023. [Google Scholar]
- Mendis, N.A. Use of Unmanned Aerial Vehicles in Crime Scene Investigations—Novel Concept of Crime Scene Investigations. Forensic Res. Criminol. Int. J. 2017, 4, 1–2. [Google Scholar] [CrossRef]
- Daubert v. Merrell Dow Pharmaceuticals, Inc., 509 U.S. 579. 1993. Available online: https://supreme.justia.com/cases/federal/us/509/579/ (accessed on 12 June 2025).
- Dirkmaat, D.C.; Cabo, L.L.; Ousley, S.D.; Symes, S.A. New Perspectives in Forensic Anthropology. Am. J. Phys. Anthropol. 2008, 137, 33–52. [Google Scholar] [CrossRef]
- Grivas, C.; Komar, D. Kumho, Daubert, and the Nature of Scientific Inquiry: Implications for Forensic Anthropology. J. Forensic Sci. 2008, 53, 771–776. [Google Scholar] [CrossRef]
- Christensen, A.M.; Crowder, C.M. Evidentiary Standards for Forensic Anthropology. J. Forensic Sci. 2009, 54, 1211–1216. [Google Scholar] [CrossRef]
- Delabarde, T.; Ludes, B. Missing in Amazonian Jungle: A Case Report of Skeletal Evidence for Dismemberment. J. Forensic Sci. 2010, 55, 1105–1110. [Google Scholar] [CrossRef] [PubMed]
- Maiese, A.; Scopetti, M.; Santurro, A.; La Russa, R.; Manetti, F.; D’Errico, S.; De Matteis, A.; Cingolani, M.; Neri, M.; Pinchi, E.; et al. Corpse Dismemberment: A Case Series. Solving the Puzzle through an Integrated Multidisciplinary Approach. Int. J. Leg. Med. 2020, 74, 102005. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, N.; Gao, S.; Li, C.; Ma, P.; Yang, S.; Jiang, H.; Shi, S.; Wu, Y.; Zhang, Q.; et al. Solving the Two-Decades-Old Murder Case through Joint Application of ZooMS and Ancient DNA Approaches. Int. J. Leg. Med. 2023, 137, 319–327. [Google Scholar] [CrossRef]
- Carter, D.O.; Yellowlees, D.; Tibbett, M. Cadaver Decomposition in Terrestrial Ecosystems. Naturwissenschaften 2007, 94, 12–24. [Google Scholar] [CrossRef]
- Forbes, S.L. Decomposition Chemistry in a Burial Environment. In Soil Analysis in Forensic Taphonomy; Tibbett, M., Carter, D., Eds.; CRC Press: London, UK, 2008; pp. 203–223. [Google Scholar]
- Aitkenhead-Peterson, J.; Owings, C.; Alexander, M.; Larison, N.; Bytheway, J.A. Mapping the Lateral Extent of Human Cadaver Decomposition with Soil Chemistry. Forensic Sci. Int. 2012, 216, 127–134. [Google Scholar] [CrossRef]
- Adams, K.S.; Finaughty, D.A.; Gibbon, V.E. Forensic Taphonomic Experimental Design Matters: A Study Assessing Clothing and Carrion Biomass Load on Scavenging in Cape Town, South Africa. Int. J. Leg. Med. 2024, 138, 1669–1684. [Google Scholar] [CrossRef]
- Cobaugh, K.L.; Schaeffer, S.M.; DeBruyn, J.M. Functional and Structural Succession of Soil Microbial Communities below Decomposing Human Cadavers. PLoS ONE 2015, 10, e0130201. [Google Scholar] [CrossRef] [PubMed]
- Hochrein, M. An Autopsy of the Grave: Recognizing, Collecting, and Preserving Forensic Geotaphonomic Evidence. In Advances in Forensic Taphonomy; Haglund, W., Sorg, M., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2001. [Google Scholar]
- Rodriguez, W. Insect Activity and Its Relationship to Decay Rates of Human Cadavers in East Tennessee. Master’s Thesis, University of Tennessee, Knoxville, Knoxville, TN, USA, 1982. [Google Scholar]
- Spies, J. The Effect of Clothing and Carrion Biomass Load on Decomposition and Scavenging in a Forensically Significant Thicketed Habitat in Cape Town, South Africa. Ph.D. Thesis, University of Cape Town, Cape Town, South Africa, 2022. [Google Scholar]
- Carter, D.O.; Tibbett, M. Taphonomic Mycota: Fungi with Forensic Potential. J. Forensic Sci. 2003, 48, 2002169. [Google Scholar] [CrossRef]
- Olakanye, A.O.; Ralebitso-Senior, T.K. Assessing Subsurface Decomposition and Potential Impacts on Forensic Investigations. In Forensic Ecogenomics; Elsevier: Amsterdam, The Netherlands, 2018; pp. 145–176. ISBN 978-0-12-809360-3. [Google Scholar]
- Du Toit, C.L.; Myburgh, J.; Brits, D. The Influence of Rehydration on Decomposition in the Highveld Region of South Africa—Using a Pig Model. J. Forensic Sci. 2024, 69, 1407–1420. [Google Scholar] [CrossRef]
- Voss, S.C.; Forbes, S.L.; Dadour, I.R. Decomposition and Insect Succession on Cadavers inside a Vehicle Environment. Forensic Sci. Med. Pathol. 2008, 4, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Szelecz, I.; Koenig, I.; Seppey, C.V.W.; Le Bayon, R.-C.; Mitchell, E.A.D. Soil Chemistry Changes beneath Decomposing Cadavers over a One-Year Period. Forensic Sci. Int. 2018, 286, 155–165. [Google Scholar] [CrossRef]
- D’Errico, S.; Turillazzi, E.; Pomara, C.; Fiore, C.; Monciotti, F.; Fineschi, V. A Novel Macabre Ritual of the Italian Mafia (‘Ndrangheta): Covering Hands with Gloves and Burying the Corpse with Burnt Lime after Execution. Am. J. Forensic Med. Pathol. 2011, 32, 44–46. [Google Scholar] [CrossRef]
- Carter, D.O.; Yellowlees, D.; Tibbett, M. Can Temperature Affect the Release of Ninhydrin-Reactive Nitrogen in Gravesoil Following the Burial of a Mammalian (Rattus Rattus) Cadaver? In Criminal and Environmental Soil Forensics; Ritz, K., Dawson, L., Miller, D., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 333–340. ISBN 978-1-4020-9203-9. [Google Scholar]
- Bass, W. Outdoor Decomposition Rates in Tennessee. In Forensic Taphonomy; Haglund, W., Sorg, M., Eds.; CRC Press: Boca Raton, FL, USA, 1996; pp. 181–186. ISBN 978-0-8493-9434-8. [Google Scholar]
- Schotsmans, E.M.J.; Denton, J.; Dekeirsschieter, J.; Ivaneanu, T.; Leentjes, S.; Janaway, R.C.; Wilson, A.S. Effects of Hydrated Lime and Quicklime on the Decay of Buried Human Remains Using Pig Cadavers as Human Body Analogues. Forensic Sci. Int. 2012, 217, 50–59. [Google Scholar] [CrossRef]
- Connor, M.; Baigent, C.; Hansen, E.S. Testing the Use of Pigs as Human Proxies in Decomposition Studies. J. Forensic Sci. 2017, 63, 1350–1355. [Google Scholar] [CrossRef]
- Kleijnen, J.P.C. Sensitivity Analysis and Related Analyses: A Review of Some Statistical Techniques. J. Stat. Comput. Simul. 1997, 57, 111–142. [Google Scholar] [CrossRef]
Main Keyword | Synonyms and Boolean Operators |
---|---|
Drone | drone* OR “unmanned aerial vehicle*” OR ”UAV” OR ”unmanned aerial system” OR ”UAS” OR thermal OR infrared OR “near-infrared” OR multispectral OR “hyperspectral” OR “LIDAR” OR “Light Detection and Ranging” OR “low altitude" OR “low-cost” OR “non-invasive” OR “remote sensing” OR ”Unmanned Aerial Devices” |
Grave | grave* OR burial* OR “forensic grave*” OR “clandestine grave*” OR “clandestine burial*” OR “mass grave*” OR “mass burial*” OR cemeter* OR “human remain*” OR “buried remain*” OR cadaver* OR “unmarked grave*” OR "hidden grave*” OR "hidden burial*” |
Forensics | “forensic investigation*” OR “crime scene*” OR ”detect*” OR ”locati*” OR ”search*” OR ”survey” |
Study | UAV | RGB | MS * | HS * | Thermal | NIR | Specific Sensor Type |
---|---|---|---|---|---|---|---|
ST1 | Lightweight drone [89] | - | |||||
ST2 | DJI Phantom 1 [92] | GoPro Hero 3 and a Zomei NIR filter | |||||
ST3 | Custom octocopter UAV [50] | Hyperspectral (Headwall Nano-Hyperspec), Thermal (FLIR Systems Vue Pro), and RGB (standard camera from Phantom Pro) | |||||
Phantom 4 Pros [50] | |||||||
ST4 | DJI Inspire1 Model T600 [59] | Zenmuse XT Longwave Infrared Thermal camera (FLIR) | |||||
ST5 | DJI F550 Flame-wheel [69] | A GoPro Hero 4 (Black Edition) and Unmodified RGB camera | |||||
ST6 | DJI Inspire [58] | Zenmuse XT FLIR | |||||
ST7 | Mavic Pro drone [97] | - | |||||
ST8 | DJI Phantom 4 Advance [31] | ||||||
DJI Inspire V1 | Xemus XT Thermal camera | ||||||
ST9 | Parrot Bluegrass Field (PF726300) [90] | Parrot Sequoia Multispectral sensor and RGB camera | |||||
ST10 | DJI Inspire 2 [94] | Sentera 6× Multispectral sensor and RGB camera | |||||
ST11 | DJI Mavic 2 Pro [64] | - | |||||
ST12 | Parrot Anafi [57] | Thermal (FLIR) Lepton 3.5 microbolometer sensor | |||||
ST13 | DJI Mavic Pro [93] | - | |||||
ST14 | DJI Mavic Pro 2 [98] | - | |||||
ST15 | Parrot Anafi [49] | RGB (21 MP Sony IMX230 1/2.422) | |||||
Parrot Bluegrass | Parrot Sequoia Multispectral sensor | ||||||
ST16 | Not specified [95] | - | |||||
ST17 | DJI Matrice 300 [91] | Micasense Altum-PT Multispectral sensor | |||||
ST18 | DJI Mavic Mini Pro 2 [96] | - | |||||
ST19 | DJI Matrice 300 RTK [60] | Zenmuse H20T (Thermal camera) |
Drone and Image Sensor | cm/per Pixel | Altitude (m) |
---|---|---|
DJI Phantom 4 Pro with RGB [50] | 2 | 60.06 * |
Hyperspectral (Headwall Nano-Hyperspec) ** [50] | 6 | 60.06 * |
Mavic Pro with RGB [97] | 4.9 | 150 |
DJI Mavic 2 Prowith RGB [64] | 1.18 | 53.3 |
DJI Mavic Pro with RGB [93] | 10 | 65 |
Parrot Anafi RGB (21 MP Sony IMX230 1/2.422) [49] | 10 | 30 |
Parrot Bluegrass Parrot Sequoia multispectral [49] | 10 | 30 |
DJI Matrice 300 RTK Zenmuse H20T (Thermal camera) [60] | 1.33 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Bruyn, C.; Ralebitso-Senior, K.; Scott, K.; Panter, H.; Bezombes, F. Search, Detect, Recover: A Systematic Review of UAV-Based Remote Sensing Approaches for the Location of Human Remains and Clandestine Graves. Drones 2025, 9, 674. https://doi.org/10.3390/drones9100674
de Bruyn C, Ralebitso-Senior K, Scott K, Panter H, Bezombes F. Search, Detect, Recover: A Systematic Review of UAV-Based Remote Sensing Approaches for the Location of Human Remains and Clandestine Graves. Drones. 2025; 9(10):674. https://doi.org/10.3390/drones9100674
Chicago/Turabian Stylede Bruyn, Cherene, Komang Ralebitso-Senior, Kirstie Scott, Heather Panter, and Frederic Bezombes. 2025. "Search, Detect, Recover: A Systematic Review of UAV-Based Remote Sensing Approaches for the Location of Human Remains and Clandestine Graves" Drones 9, no. 10: 674. https://doi.org/10.3390/drones9100674
APA Stylede Bruyn, C., Ralebitso-Senior, K., Scott, K., Panter, H., & Bezombes, F. (2025). Search, Detect, Recover: A Systematic Review of UAV-Based Remote Sensing Approaches for the Location of Human Remains and Clandestine Graves. Drones, 9(10), 674. https://doi.org/10.3390/drones9100674