Identification of Pine Wilt-Diseased Trees Using UAV Remote Sensing Imagery and Improved PWD-YOLOv8n Algorithm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Selection
2.2. Data Acquisition and Preprocessing
2.3. Improved YOLOv8n-Based Detection Model
2.3.1. Enhancing Feature Extraction
2.3.2. Enhancing Feature Fusion
2.3.3. Lightweighting Model Networks
2.3.4. Improving Loss Function
2.4. Experimental Environment and Evaluation Index
3. Results
3.1. Ablation Experiments
3.2. Optimizing Inner-SIoU Ratio
3.3. Performance Comparison of Different Object-Detection Models
3.4. Performance Comparison in Complex Backgrounds
4. Discussion
4.1. Advantages of UAV Remote Sensing
4.2. Model Improvement Performance
4.3. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vicente, C.; Espada, M.; Vieira, P.; Mota, M. Pine Wilt Disease: A Threat to European Forestry. Eur. J. Plant Pathol. 2012, 133, 89–99. [Google Scholar] [CrossRef]
- Li, M.; Li, H.; Ding, X.; Wang, L.; Wang, X.; Chen, F. The Detection of Pine Wilt Disease: A Literature Review. Int. J. Mol. Sci. 2022, 23, 10797. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, T.; Webster, J. Distribution of Pine Wilt Disease with Respect to Temperature in North America, Japan, and Europe. Can. J. For. Res. 1987, 17, 1050–1059. [Google Scholar] [CrossRef]
- Syifa, M.; Park, S.; Lee, C. Detection of Pine Wilt Disease Tree Candidates for Drone Remote Sensing Using Artificial Intelligence Techniques. Engineering 2020, 6, 919–926. [Google Scholar] [CrossRef]
- Zhang, B.; Ye, H.; Lu, W.; Huang, W.; Wu, B.; Hao, Z.; Sun, H. A Spatiotemporal Change Detection Method for Monitoring Pine Wilt Disease in a Complex Landscape Using High-Resolution Remote Sensing Imagery. Remote Sens. 2021, 13, 2083. [Google Scholar] [CrossRef]
- Cai, P.; Chen, G.; Yang, H.; Li, X.; Zhu, K.; Wang, T.; Liao, P.; Han, M.; Gong, Y.; Wang, Q. Detecting Individual Plants Infected with Pine Wilt Disease Using Drones and Satellite Imagery: A Case Study in Xianning, China. Remote Sens. 2023, 15, 2671. [Google Scholar] [CrossRef]
- Lin, X.; Chen, Q.; Wang, M.; Ma, X.; Liu, Y. Identification of Dead Trees in Bursaphelenchus xylophilus Disease-affected Areas Based on UAV Multispectral Images. Guangxi For. Sci. 2023, 52, 589–593. [Google Scholar]
- Huang, J.; Lu, X.; Chen, L.; Sun, H.; Wang, S.; Fang, G. Accurate Identification of Pine Wood Nematode Disease with a Deep Convolution Neural Network. Remote Sens. 2022, 14, 913. [Google Scholar] [CrossRef]
- Lim, W.; Choi, K.; Cho, W.; Chang, B.; Ko, D.W. Efficient Dead Pine Tree Detecting Method in the Forest Damaged by Pine Wood Nematode (Bursaphelenchus xylophilus) through Utilizing Unmanned Aerial Vehicles and Deep Learning-Based Object Detection Techniques. For. Sci. Technol. 2022, 18, 36–43. [Google Scholar] [CrossRef]
- Li, F.; Liu, Z.; Shen, W.; Wang, Y.; Wang, Y.; Ge, C.; Sun, F.; Lan, P. A Remote Sensing and Airborne Edge-Computing Based Detection System for Pine Wilt Disease. IEEE Access 2021, 9, 66346–66360. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, J.; Sun, H.; Lu, X.; Huang, J.; Wang, S.; Fang, G. Satellite Remote Sensing Identification of Discolored Standing Trees for Pine Wilt Disease Based on Semi-Supervised Deep Learning. Remote Sens. 2022, 14, 5936. [Google Scholar] [CrossRef]
- Zhou, H.; Yuan, X.; Zhou, H.; Shen, H.; Ma, L.; Sun, L.; Fang, G.; Sun, H. Surveillance of Pine Wilt Disease by High Resolution Satellite. J. For. Res. 2022, 33, 1401–1408. [Google Scholar] [CrossRef]
- Liu, J.; Li, Q.; Wang, B.; Huang, X.; Lei, L. Identification of Wood Infected by Pine Wilt Disease with Better than 2 m Multi-Temporal Images. Beijing Surv. Mapp. 2023, 37, 1638–1643. [Google Scholar]
- Liu, F.; Jiang, S.; Zhang, J.; He, S. Detection of Small Size Trees with Pine Wilt Disease Based on NanoDet-SimAM. J. Shenyang Univ. Technol. 2024, 1–7. Available online: https://link.cnki.net/urlid/21.1189.T.20240316.2208.002 (accessed on 23 July 2024).
- Lee, K.; Park, J. Economic Evaluation of Unmanned Aerial Vehicle for Forest Pest Monitoring. J. Korea Acad.-Ind. Coop. Soc. 2019, 20, 440–446. [Google Scholar]
- Yu, R.; Luo, Y.; Zhou, Q.; Zhang, X.; Wu, D.; Ren, L. Early Detection of Pine Wilt Disease Using Deep Learning Algorithms and UAV-Based Multispectral Imagery. For. Ecol. Manag. 2021, 497, 119493. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Z.; Rao, Y.; Zheng, J.; Zhang, N.; Wang, D.; Zhu, J.; Fang, Y.; Gao, X. Identification of Pine Wilt Disease Infected Wood Using UAV RGB Imagery and Improved YOLOv5 Models Integrated with Attention Mechanisms. Forests 2023, 14, 588. [Google Scholar] [CrossRef]
- Zhang, R.; Xia, L.; Chen, L.; Ding, C.; Zheng, A.; Hu, X.; Yi, T.; Chen, M.; Chen, T. Performance Comparison of Deep Learning Models on Segmentation Wilt Pine Disease with UAV. Remote Sens. Nat. Resour. 2023, 1–9. Available online: https://link.cnki.net/urlid/10.1759.p.20231124.1612.030 (accessed on 23 July 2024).
- Ye, X.; Pan, J.; Liu, G.; Shao, F. Exploring the Close-Range Detection of UAV-Based Images on Pine Wilt Disease by an Improved Deep Learning Method. Plant Phenom. 2023, 5, 0129. [Google Scholar] [CrossRef]
- Liu, H.; Li, W.; Jia, W.; Sun, H.; Zhang, M.; Song, L.; Gui, Y. Clusterformer for Pine Tree Disease Identification Based on UAV Remote Sensing Image Segmentation. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5609215. [Google Scholar] [CrossRef]
- Wang, S.; Cao, X.; Wu, M.; Yi, C.; Zhang, Z.; Fei, H.; Zheng, H.; Jiang, H.; Jiang, Y.; Zhao, X. Detection of Pine Wilt Disease Using Drone Remote Sensing Imagery and Improved YOLOv8 Algorithm: A Case Study in Weihai, China. Forests 2023, 14, 2052. [Google Scholar] [CrossRef]
- Du, Z.; Wu, S.; Wen, Q.; Zheng, X.; Lin, S.; Wu, D. Pine Wilt Disease Detection Algorithm Based on Improved YOLOv5. Front. Plant Sci. 2024, 15, 1302361. [Google Scholar] [CrossRef]
- Xia, L.; Zhang, R.; Chen, L.; Li, L.; Yi, T.; Wen, Y.; Ding, C.; Xie, C. Evaluation of Deep Learning Segmentation Models for Detection of Pine Wilt Disease in Unmanned Aerial Vehicle Images. Remote Sens. 2021, 13, 3594. [Google Scholar] [CrossRef]
- Terven, J.; Córdova-Esparza, D.M.; Romero-González, J.A. A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Mach. Learn. Knowl. Extr. 2023, 5, 1680–1716. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Hou, Q.; Zhou, D.; Feng, J. Coordinate Attention for Efficient Mobile Network Design. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13713–13722. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790. [Google Scholar]
- Chen, J.; Kao, S.h.; He, H.; Zhuo, W.; Wen, S.; Lee, C.H.; Chan, S.H.G. Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 12021–12031. [Google Scholar]
- Ouyang, D.; He, S.; Zhang, G.; Luo, M.; Guo, H.; Zhan, J.; Huang, Z. Efficient Multi-Scale Attention Module with Cross-Spatial Learning. In Proceedings of the ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes, Greece, 4–10 June 2023; pp. 1–5. [Google Scholar]
- Zhang, H.; Xu, C.; Zhang, S. Inner-IoU: More Effective Intersection over Union Loss with Auxiliary Bounding Box. arXiv 2023, arXiv:2311.02877. [Google Scholar]
- Zhang, C.; Ding, H.; Shi, Q.; Wang, Y. Grape Cluster Real-Time Detection in Complex Natural Scenes Based on YOLOv5s Deep Learning Network. Agriculture 2022, 12, 1242. [Google Scholar] [CrossRef]
- Wang, C.; Bochkovskiy, A.; Liao, H.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 7464–7475. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Adv. Neural Inf. Process. Syst. 2015, 28. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Proceedings, Part I 14, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. [Google Scholar]
- Qin, B.; Sun, F.; Shen, W.; Dong, B.; Ma, S.; Huo, X.; Lan, P. Deep Learning-Based Pine Nematode Trees’ Identification Using Multispectral and Visible UAV Imagery. Drones 2023, 7, 183. [Google Scholar] [CrossRef]
- Zaidi, S.S.A.; Ansari, M.S.; Aslam, A.; Kanwal, N.; Asghar, M.; Lee, B. A Survey of Modern Deep Learning based Object Detection Models. Digit. Signal Process. 2022, 126, 103514. [Google Scholar] [CrossRef]
- Junos, M.H.; Khairuddin, A.S.M.; Dahari, M. Automated Object Detection on Aerial Images for Limited Capacity Embedded Device Using a Lightweight CNN Model. Alex. Eng. J. 2022, 61, 6023–6041. [Google Scholar] [CrossRef]
- Zhao, K.; Zhao, L.; Zhao, Y.; Deng, H. Study on Lightweight Model of Maize Seedling Object Detection Based on YOLOv7. Appl. Sci. 2023, 13, 7731. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, W.; Bi, H.; Chen, R.; Zong, S.; Luo, Y. A Detection Method for Individual Infected Pine Trees with Pine Wilt Disease Based on Deep Learning. Forests 2022, 13, 1880. [Google Scholar] [CrossRef]
- Yin, D.; Cai, Y.; Li, Y.; Yuan, W.; Zhao, Z. Assessment of the Health Status of Old Trees of Platycladus orientalis L. Using UAV Multispectral Imagery. Drones 2024, 8, 91. [Google Scholar] [CrossRef]
- Xie, W.; Wang, H.; Liu, W.; Zang, H. Early-Stage Pine Wilt Disease Detection via Multi-Feature Fusion in UAV Imagery. Forests 2024, 15, 171. [Google Scholar] [CrossRef]
- Ren, D.; Peng, Y.; Sun, H.; Yu, M.; Yu, J.; Liu, Z. A Global Multi-Scale Channel Adaptation Network for Pine Wilt Disease Tree Detection on UAV Imagery by Circle Sampling. Drones 2022, 6, 353. [Google Scholar] [CrossRef]
- Yuan, Q.; Zou, S.; Wang, H.; Luo, W.; Zheng, X.; Liu, L.; Meng, Z. A Lightweight Pine Wilt Disease Detection Method Based on Vision Transformer-Enhanced YOLO. Forests 2024, 15, 1050. [Google Scholar] [CrossRef]
Flight Parameters | Values |
---|---|
Flight altitude (m) | 350 |
Flight speed (m/s) | 15 |
Forward overlap rate (%) | 80 |
Side overlap rate (%) | 80 |
Capture interval (s) | 8 |
Image Type | Training Set | Validation Set | Test Set | Total |
---|---|---|---|---|
Original images | 572 | 246 | 76 | 894 |
Augmented images | 2774 | 1184 | 76 | 4034 |
Item | Model |
---|---|
Operating system | Windows10 |
Programming language | Python 3.9.17 |
CPU | Intel Core i5-13400F |
GPU | RTX4060Ti |
GPU memory | 16 GB |
Framework | PyTorch |
Model | CBAM and CA | BiFPN | C2f-Faster | C2f-Faster-EMA | Inner-SIoU | P (/%) | R (/%) | mAP@0.5 (/%) | Parameters (MB) | Detection Time (ms/Sheet) | GFLOPS (G) | Missing Rate (/%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
YOLOv8n | 83.8 | 85.8 | 91.0 | 6.0 | 20.3 | 8.1 | 10.3 | |||||
√ | 86.1 | 85.6 | 92.5 | 6.0 | 20.7 | 8.1 | 9.0 | |||||
√ | √ | 87.6 | 84.7 | 92.9 | 6.2 | 21.4 | 12.4 | 7.4 | ||||
√ | √ | √ | 85.9 | 85.7 | 93.0 | 4.8 | 20.7 | 10.3 | 8.6 | |||
√ | √ | √ | √ | 87.8 | 86.5 | 93.5 | 4.8 | 22.1 | 10.5 | 7.8 | ||
√ | √ | √ | √ | √ | 87.9 | 87.0 | 94.3 | 4.8 | 23.3 | 10.5 | 6.6 |
Ratio | mAP@0.5 (/%) | Missing Rate (/%) |
---|---|---|
1.1 | 93.0 | 7.9 |
1.15 | 93.7 | 7.3 |
1.2 | 93.6 | 7.2 |
1.25 | 93.6 | 6.9 |
1.3 | 93.9 | 7.4 |
1.35 | 94.3 | 6.6 |
1.4 | 93.4 | 7.8 |
1.45 | 93.2 | 7.5 |
1.5 | 93.1 | 8.4 |
Model | P (/%) | R (/%) | mAP@0.5 (/%) | Parameters (MB) |
---|---|---|---|---|
Faster R-CNN | 49.8 | 89.7 | 84.0 | 108 |
SSD | 80.8 | 87.2 | 90.2 | 90.6 |
YOLOv5s | 83.7 | 85.6 | 90.0 | 13.7 |
YOLOv7-tiny | 84.7 | 86.9 | 90.2 | 11.7 |
YOLOv8n | 83.8 | 85.8 | 91.0 | 6.0 |
PWD-YOLOv8n | 87.9 | 87.0 | 94.3 | 4.8 |
Model | Number of Detected Diseased Trees | Missing Rate (/%) | Detection Time (ms/Sheet) |
---|---|---|---|
Faster R-CNN | 98 | 25.1 | 166 |
SSD | 103 | 21.3 | 167 |
YOLOv5s | 99 | 24.0 | 12.9 |
YOLOv7-tiny | 94 | 28.3 | 43.1 |
YOLOv8n | 106 | 19.0 | 15.3 |
PWD-YOLOv8n | 123 | 6.1 | 24.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, J.; Qin, B.; Sun, F.; Lan, P.; Liu, G. Identification of Pine Wilt-Diseased Trees Using UAV Remote Sensing Imagery and Improved PWD-YOLOv8n Algorithm. Drones 2024, 8, 404. https://doi.org/10.3390/drones8080404
Su J, Qin B, Sun F, Lan P, Liu G. Identification of Pine Wilt-Diseased Trees Using UAV Remote Sensing Imagery and Improved PWD-YOLOv8n Algorithm. Drones. 2024; 8(8):404. https://doi.org/10.3390/drones8080404
Chicago/Turabian StyleSu, Jianyi, Bingxi Qin, Fenggang Sun, Peng Lan, and Guolin Liu. 2024. "Identification of Pine Wilt-Diseased Trees Using UAV Remote Sensing Imagery and Improved PWD-YOLOv8n Algorithm" Drones 8, no. 8: 404. https://doi.org/10.3390/drones8080404
APA StyleSu, J., Qin, B., Sun, F., Lan, P., & Liu, G. (2024). Identification of Pine Wilt-Diseased Trees Using UAV Remote Sensing Imagery and Improved PWD-YOLOv8n Algorithm. Drones, 8(8), 404. https://doi.org/10.3390/drones8080404