Meta Surface-Based Multiband MIMO Antenna for UAV Communications at mm-Wave and Sub-THz Bands
Abstract
1. Introduction
The State of the Art and Originality of Study
- A significant feature of the proposed antenna is its use of a coplanar proximity technique combining capacitive and inductive loading, enhanced by mesh-like slots and a vertical slot to mitigate open-stopband (OSB) issues. These design elements enable the antenna to radiate broadside and bidirectionally. Additionally, H-shaped slots on a strip enhance port isolation, and a coffee bean metasurface (MTS) boosts radiation efficiency and gain. Compared to other shapes like rectangles and rings, this unique structure can support multiple resonant modes, potentially enhancing the operational bandwidth due to its asymmetrical geometry. It also helps distribute the electromagnetic fields, reduces losses, enhances radiation efficiency, and offers effective CP.
- This approach enables a compact, planar configuration suitable for installing unmanned aerial vehicles (UAVs). The antenna provides adaptable radiation patterns and the capability to steer beams across various frequency bands, catering to the signal coverage needs in both the upper and the lower half-spaces, meeting the demands of UAV missions. A significant achievement of this design lies in its attainment of a broad bandwidth within the mm-wave band and sub-THz, making it highly appealing for facilitating high-data-rate communications in UAV-assisted mm-wave scenarios.
- It can offer high data rates to D2G base stations and allows for high data rate transmissions, enabling the transfer of high-definition video, real-time telemetry, and other data-intensive applications. In addition, higher-frequency bands are less crowded, reducing the likelihood of interference and improving the reliability and quality of communication. The high directional gain of the antenna enhances the effective communication range and signal quality by focusing the signal that is going toward the base station, reducing power requirements, and increasing the signal-to-noise ratio. For D2D communications, it can offer efficient swarm communication (high data rates at mm-wave and sub-THz), low latency (crucial for time-sensitive operations such as formation flying and collision avoidance), and directional communication (high directional gain helps in maintaining robust links between specific drones in a swarm). Last but not least, in D2S communications, the proposed antenna can be beneficial for long-range communication due to the high directional gain, higher BW, and the X-band, higher-frequency bands, which can support high bandwidth communication, and polarization flexibility (circular polarization helps reduce signal degradation due to atmospheric conditions and maintains consistent communication quality with satellites).
2. Materials and Methods
2.1. Simulation
2.1.1. Design Process of the Antenna with a Single Port
2.1.2. The Proposed MIMO LWA and Incorporation of Neutralization Network and MTS Cells
3. Fabrication, Testing, and Comparison of Simulated and Measured Results
3.1. Antenna Characteristics in Air and Integrated with Drones
3.2. Antenna System Positioning on Drones and Its Assessment for UAV Communications
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Hu, J.; Lin, H.; Garg, S.; Kaddoum, G.; Piran, M.J.; Hossain, M.S. QoS and privacy-aware routing for 5G-enabled industrial Internet of Things: A federated reinforcement learning approach. IEEE Trans. Ind. Informat. 2022, 18, 4189–4197. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, Y.; Loo, J.; Yang, D.; Xiao, L. Joint computation and communication design for UAV-assisted mobile edge computing in IoT. IEEE Trans. Ind. Informat. 2020, 16, 5505–5516. [Google Scholar] [CrossRef]
- Liang, J.; Liu, W.; Xiong, N.N.; Liu, A.; Zhang, S. An intelligent and trust UAV-assisted code dissemination 5G system for industrial Internet-of-Things. IEEE Trans. Ind. Informat. 2022, 18, 2877–2889. [Google Scholar] [CrossRef]
- Mafukidze, H.D.; Mishra, A.K.; Pidanic, J.; Francois, S.W.P. Scattering centers to point clouds: A review of mmWave radars for non-radar-engineers. IEEE Access 2022, 10, 110992–111021. [Google Scholar] [CrossRef]
- Liu, B.; Tang, P.; Zhang, J.; Yin, Y.; Liu, G.; Xia, L. Propagation characteristics comparisons between mmWave and visible light bands in the conference scenario. Photonics 2022, 9, 228. [Google Scholar] [CrossRef]
- Xiao, Z.; Zhu, L.; Liu, Y.; Yi, P.; Zhang, R.; Xia, X.G.; Schober, R. A survey on millimeter-wave beamforming enabled UAV communications and networking. IEEE Commun. Surv. Tuts. 2022, 24, 557–610. [Google Scholar] [CrossRef]
- Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Communications and Control for Wireless Drone-Based Antenna Array. IEEE Trans. Commun. 2019, 67, 820–834. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, G.; Ji, Y.; Zhang, Z.; Ge, L.; He, W. Joint Microwave and Millimeter-Wave Antenna Design for UAV-Enabled Communications. IEEE Trans. Ind. Inform. 2023, 19, 10739–10750. [Google Scholar] [CrossRef]
- Khawaja, W.; Ozdemir, O.; Guvenc, I. UAV Air-to-Ground Channel Characterization for mmWave Systems. In Proceedings of the 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada, 24–27 September 2017. [Google Scholar]
- Heimann, K.; Tiemann, J.; Boecker, S.; Wietfeld, C. On the Potential of 5G mmWave Pencil Beam Antennas for UAV Communications: An Experimental Evaluation. In Proceedings of the WSA 2018; 22nd International ITG Workshop on Smart Antennas, Bochum, Germany, 14–16 March 2018; pp. 1–6. [Google Scholar]
- Lee, H.; Kim, Y.-B.; Lee, H.L. Reconfigurable antenna for UAV-assisted wide coverage air-to-ground communications. IEEE Access 2022, 10, 88034–88042. [Google Scholar] [CrossRef]
- Pham, D.A.; Lee, M.; Lim, S. High-gain conical-beam planar antenna for millimeter-wave drone applications. IEEE Trans. Antennas Propag. 2021, 69, 6959–6964. [Google Scholar] [CrossRef]
- Chou, H.-T.; Lin, D.-B.; Chiu, H.-L. Planar dual-mode dipole antenna formed by artificial microstrip arms loaded with multiple H-slots for broadband operation of vertically polarized radiation on UAV platform. IEEE Trans. Antennas Propag. 2022, 70, 7869–7877. [Google Scholar] [CrossRef]
- Tang, H.; Bulger, C.J.; Rovere, T.; Zheng, B.; An, S.; Li, H.; Dong, Y.; Haerinia, M.; Fowler, C.; Gonya, S.; et al. A low-profile flexible dual-band antenna with quasi-isotropic radiation patterns for MIMO system on UAVs. IEEE Antennas Wirel. Propag. Lett. 2022, 22, 49–53. [Google Scholar] [CrossRef]
- Akhter, Z.; Bilal, R.M.; Shamim, A. A dual-mode, thin and wideband MIMO antenna system for seamless integration on UAV. IEEE Open J. Antennas Propag. 2021, 2, 991–1000. [Google Scholar] [CrossRef]
- Carpenter, A.; Lawrence, J.A.; Ghail, R.; Mason, P.J. The Development of Copper Clad Laminate Horn Antennas for Drone Interferometric Synthetic Aperture Radar. Drones 2023, 7, 215. [Google Scholar] [CrossRef]
- Li, Y.J.; Wang, J.H. Dual-band leaky-wave antenna based on dual-mode composite microstrip line for microwave and millimeter-wave applications. IEEE Trans. Antennas Propag. 2018, 66, 1660–1668. [Google Scholar] [CrossRef]
- Yang, X.; Ge, L.; Ji, Y.; Zeng, X.; Li, Y.; Ding, C.; Sun, J.; Luk, K.M. An integrated tri-band antenna system with large frequency ratio for WLAN and WiGig applications. IEEE Trans. Ind. Electron. 2021, 68, 4529–4540. [Google Scholar] [CrossRef]
- Xing, Y.; Rappaport, T.S. Propagation Measurement System and Approach at 140 GHz-Moving to 6G and Above 100 GHz. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–6. [Google Scholar]
- Xu, L.; Chen, M.; Chen, M.; Yang, Z.; Chaccour, C.; Saad, W.; Hong, C.S. Joint Location, Bandwidth and Power Optimization for THz-Enabled UAV Communications. IEEE Commun. Lett. 2021, 25, 1984–1988. [Google Scholar] [CrossRef]
- Alali, A.; Rawat, D.B.; Liu, C. Trajectory and Power Optimization in sub-THz band for UAV Communications. In Proceedings of the 2022 IEEE International Conference on Communications (ICC): SAC Aerial Communications, Seoul, Republic of Korea, 16–20 May 2022. [Google Scholar]
- Xia, W.; Semkin, V.; Mezzavilla, M.; Loianno, G.; Rangan, S. Multi-Array Designs for mm-Wave and Sub-THz Communication to UAVs. In Proceedings of the 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Atlanta, GA, USA, 26–29 May 2020. [Google Scholar]
- Venneri, F.; Costanzo, S.; Borgia, A. Fractal Metasurfaces and Antennas: An Overview for Advanced Applications in Wireless Communications. Appl. Sci. 2024, 14, 2843. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, H. A Comprehensive Review of Metamaterials/Metasurface-Based MIMO Antenna Array for 5G Millimeter-Wave Applications. J. Supercond. Nov. Magn. 2022, 35, 3025–3049. [Google Scholar] [CrossRef]
- Li, T.; Yang, H.; Li, Q.; Jidi, L.; Cao, X.; Gao, J. Broadband Low-RCS and High-Gain Microstrip Antenna Based on Concentric Ring-Type Metasurface. IEEE Trans. Antennas Propag. 2021, 69, 5325–5334. [Google Scholar] [CrossRef]
- Zheng, Q.; Guo, C.; Ding, J.; Vandenbosch, G.A.E. A Broadband Low-RCS Metasurface for CP Patch Antennas. IEEE Trans. Antennas Propag. 2020, 69, 3529–3534. [Google Scholar] [CrossRef]
- Chen, C.; Chen, J.; Zhou, J.; Wen, L.; Hong, W. Millimeter-Wave Filtering Metasurface Antenna Array with Printed RGW Technology. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 1622–1626. [Google Scholar] [CrossRef]
- Yi, H.; Mu, Y.; Han, J.; Li, L. Broadband millimeter-wave metasurface antenna array with printed ridge gap waveguide for high front-to-back ratio. J. Inf. Intell. 2023, 1, 11–22. [Google Scholar] [CrossRef]
- Cao, T.N.; Nguyen, M.T.; Phan, H.L.; Nguyen, D.D.; Vu, D.L.; Nguyen, T.Q.H.; Kim, J.-M. Millimeter-Wave Broadband MIMO Antenna Using Metasurfaces for 5G Cellular Networks. Int. J. RF Microw. Comput. Aided Eng. 2023, 2023, 9938824. [Google Scholar] [CrossRef]
- Tariq, S.; Rahim, A.A.; Sethi, W.T.; Faisal, F.; Djerafi, T. Metasurface based antenna array with improved performance for millimeter wave applications. Int. J. Electron. Commun. (AEÜ) 2024, 177, 155195. [Google Scholar] [CrossRef]
- Liu, S.; Yang, D.; Chen, Y.; Sun, K.; Zhang, X.; Xiang, Y. Low-Profile Broadband Metasurface Antenna Under Multimode Resonance. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 1696–1700. [Google Scholar] [CrossRef]
- Han, K.; Yan, Y.; Yan, Z.; Wang, C. Low-Profile Millimeter-Wave Metasurface-Based Antenna with Enhanced Bandwidth. Micromachines 2023, 14, 1403. [Google Scholar] [CrossRef]
- Ali, S.M.; Jeoti, V.; Saeidi, T.; Wen, W.P. Design of compact microstrip patch antenna for WBAN applications at ISM 2.4 GHz. Indones. J. Electr. Eng. Comput. Sci. 2019, 15, 1509–1516. [Google Scholar]
- Alibakhshikenari, M.; Virdee, B.S.; See, C.H.; Abd-Alhameed, R.A.; Falcone, F.; Limiti, E. High-Isolation Leaky-Wave Array Antenna Based on CRLH-Metamaterial Implemented on SIW with ±30° Frequency Beam-Scanning Capability at Millimetre-Waves. Electronics 2019, 8, 642. [Google Scholar] [CrossRef]
- Comite, D.; Podilchak, S.K.; Baccarelli, P.; Burghignoli, P.; Galli, A.; Freundorfer, A.P.; Antar, Y.M. Analysis and Design of a Compact Leaky-Wave Antenna for WideBand Broadside Radiation. Sci. Rep. 2018, 8, 17741. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Tornero, J.L.; Quesada-Pereira, F.D.; Álvarez-Melcón, A. Analysis and design of periodic leaky-wave antennas for the millimeter waveband in hybrid waveguide-planar technology. IEEE Trans. Antennas Propag. 2005, 53, 2834–2842. [Google Scholar] [CrossRef]
- Yasin, T.; Baktur, R. Bandwidth Enhancement of Meshed Patch Antennas through Proximity Coupling. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 2501–2504. [Google Scholar] [CrossRef]
- Saeidi, T.; Al-Gburi, A.J.A.; Karamzadeh, S. A Miniaturized Full-Ground Dual-Band MIMO Spiral Button Wearable Antenna for 5G and Sub-6 GHz Communications. Sensors 2023, 23, 1997. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Ji, Y.; Ge, L.; Zeng, X.; Wu, Y.; Liu, Y. A Dual-Band Radiation-Differentiated Patch Antenna for Future Wireless Scenes. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1007–1011. [Google Scholar] [CrossRef]
- Lin, F.H.; Chen, Z.N. Low-profile wideband metasurface antennas using characteristic mode analysis. IEEE Trans. Antennas Propag. 2017, 65, 1706–1713. [Google Scholar] [CrossRef]
- Cui, T.J.; Liu, R.; Smith, D. Metamaterials: Theory, Design, and Applications; Springer: New York, NY, USA, 2010. [Google Scholar]
- Cgtrader. Available online: https://www.cgtrader.com/free-3d-models/drone (accessed on 1 January 2011).
- Guo, Y.Q.; Pan, Y.M.; Zheng, S.Y.; Lu, K. A singly-fed dual-band microstrip antenna for microwave and millimeter-wave applications in 5G wireless communication. IEEE Trans. Veh. Technol. 2021, 70, 5419–5430. [Google Scholar] [CrossRef]
- Yang, X.; Qi, Y.; Yuan, B.; Cao, Y.; Wang, G. A Miniaturized High-Gain Flexible Antenna for UAV Applications. Int. J. Antennas Propag. 2021, 2021, 9919425. [Google Scholar] [CrossRef]
- Khan, Z.; Memon, M.H.; Rahman, S.U.; Sajjad, M.; Lin, F.; Sun, L. A Single-Fed Multiband Antenna for WLAN and 5G Applications. Sensors 2020, 20, 6332. [Google Scholar] [CrossRef] [PubMed]
- Kamal, M.M.; Yang, S.; Ren, X.C.; Altaf, A.; Kiani, S.H.; Anjum, M.R.; Iqbal, A.; Asif, M.; Saeed, S.I. Infinity Shell Shaped MIMO Antenna Array for mm-Wave 5G Applications. Electronics 2021, 10, 165. [Google Scholar] [CrossRef]
- Arpaio, M.J.; Paolini, G.; Fuschini, F.; Costanzo, A.; Masotti, D. An All-in-One Dual Band Blade Antenna for ADS-B and 5G Communications in UAV Assisted Wireless Networks. Sensors 2021, 21, 5734. [Google Scholar] [CrossRef] [PubMed]
- Hussain, N.; Kim, N. Integrated Microwave and mm-Wave MIMO Antenna Module with 360° Pattern Diversity For 5G Internet-of-Things. IEEE Internet Things J. 2022, 9, 24777–24789. [Google Scholar] [CrossRef]
Ref | Antenna Type | (GHz) | Dims. (mm × mm × mm) | Peak Gain (dBi) | MIMO | Planar/Nonplanar | Single/Multiband | UAV Comm. Type |
---|---|---|---|---|---|---|---|---|
Antennas designed for UAV communications at different frequency bands | ||||||||
[11] | Conical beam | 28.3 | 48 × 48 × 5 | 8.51 | no | Planar | Single band | mm-wave drone |
[12] | Reconfigurable | 5.7 | 84 × 84 × 13 | 10.2 | yes | Nonplanar | Single band | D2G |
[13] | Dipole | 1.25 | 110 × 13 × 1 | 1.76 | no | Planar | Single band | D2G |
[14] | Dipole | 2.4, 4.4 | 58 × 58 × 0.76 | 8.7 | yes | Planar | Dual band | D2G |
[15] | Dual-mode circular patch antenna | 2.4, 5.2 | 76 | 9.55 | no | Planar | Dual band | D2G |
[16] | Horn antenna | 5.4 | >300 | 16.5 | no | Nonplanar | Single band | D2G |
[17] | Dual-mode composite microstrip line | 5.8–8.5, 35–41.5 | >250 | 20.6 | yes | Planar | Dual band | mm-wave |
[18] | Patch, magnetic–electric dipole | 2.40–2.48, 5.15–5.85, 57–64 | 140 × 140 | 9.8 | yes | Planar | Triple band | mm-wave |
Antennas utilizing MTS to enhance their performances. | ||||||||
Ref | MTSs shape | (GHz) | Dims. (mm × mm × mm) | Peak gain (dBi) | BW (GHz) | Planar/nonplanar | Single-/multiband | Applications |
[25] | Cut circular rings | 5.8 | 34.7 | 11.4 | 4–8.5 | Planar | Dual band | LTE, Sub-6 GHz |
[26] | Slotted cutting-edge rectangular | 5.5 | 80 × 80 × 1.5 | 5.66 | 5.25–6.35 | Planar | Single band | Sub-6 GHz |
[27] | Rectangular | 27 | 65 × 55 × 1.3 | 11.1 | 23.89–31.23 | Planar | Single band | mm-wave, higher 5G |
[28] | Slotted mushroom | 28 | 37.7 × 37.7 × 1.7 | 19.2 | 24.4–30.5 | Planar | Single band | mm-wave higher 5G |
[29] | Rectangular ring | 27 | 19.7 × 19.7 × 0.5 | 9.4 | 23.9–30.7 | Planar | Single band | mm-wave, higher 5G |
[30] | Split-ring resonator | 28 | 20.6 × 20.5 × 0.5 | 12.7 | 27.38–33.34 | Planar | Single band | mm-wave, higher 5G |
[32] | Rectangular | 34 | 12.5 × 12.5 | 11.3 | 30–38.58 | Planar | Single band | mm-wave |
Parameters | Values (mm) | Parameters | Values (mm) | Parameters | Values (mm) | Parameters | Values (mm) |
---|---|---|---|---|---|---|---|
6 | 15 | 0.75 | 0.12 | ||||
15 | 4.5 | 1.25 | 0.12 | ||||
1.7 | 1.25 | 1.75 | 0.12 | ||||
1.5 | 6.5 | 0.20 | 0.25 | ||||
1.25 | 2.5 | 0.125 | 0.40 | ||||
6.25 | 2 | 0.20 | 1.25 | ||||
4.5 | 1.75 | 1.75 | 1.85 | ||||
1.25 | 1.5 | 0.50 | 0.25 | ||||
5.5 | 0.12 | a | 0.40 | 16.5 | |||
0.5 | 0.12 | b | 0.65 |
Ref | Size (mm2) | Ports | Operating Frequency (GHz) | Max Gain (dBi) | Radiation Efficiency (%) | Coverage | Isolation (dB) | ECC |
---|---|---|---|---|---|---|---|---|
[10] | 114 × 114 | 3 | 1.58/2.4/26 | 7.8/3.9/8.1 | - | Upper/lower space | <50 | - |
[43] | 70 × 29 | 3 | 2.4/5.2/60 | 9.8/7.9/8.4 | <90 | Half space | <−25 | - |
[44] | 196 × 15 | 1 | 0.915 | 4.5 | <78 | - | - | - |
[45] | 30 × 30 | 1 | 2.45/5.8/25 | 5.85 | - | - | - | - |
[46] | 30 × 30 | 4 | 28 | 6.1 | 92 | Half space | <−29 | <0.16 |
[47] | 61.4 × 37.2 | 1 | 1.06/3.6 | <7.5 | - | Half space | - | - |
[48] | 53 × 53 | 4 | 2.5, 3.5, 5.5, 7.528 | <8.5 | <95 | - | <20 | - |
This work | 15 × 16.5 | 2 | 8.1–24.7/ 66–68/74–78/80–140 | <14 | <90 | Upper/lower space | <35 | <0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeidi, T.; Saleh, S.; Timmons, N.; Al-Gburi, A.J.A.; Karamzadeh, S.; Althuwayb, A.A.; Rashid, N.; Kaaniche, K.; Ben Atitallah, A.; Elhamrawy, O.I. Meta Surface-Based Multiband MIMO Antenna for UAV Communications at mm-Wave and Sub-THz Bands. Drones 2024, 8, 403. https://doi.org/10.3390/drones8080403
Saeidi T, Saleh S, Timmons N, Al-Gburi AJA, Karamzadeh S, Althuwayb AA, Rashid N, Kaaniche K, Ben Atitallah A, Elhamrawy OI. Meta Surface-Based Multiband MIMO Antenna for UAV Communications at mm-Wave and Sub-THz Bands. Drones. 2024; 8(8):403. https://doi.org/10.3390/drones8080403
Chicago/Turabian StyleSaeidi, Tale, Sahar Saleh, Nick Timmons, Ahmed Jamal Abdullah Al-Gburi, Saeid Karamzadeh, Ayman A. Althuwayb, Nasr Rashid, Khaled Kaaniche, Ahmed Ben Atitallah, and Osama I. Elhamrawy. 2024. "Meta Surface-Based Multiband MIMO Antenna for UAV Communications at mm-Wave and Sub-THz Bands" Drones 8, no. 8: 403. https://doi.org/10.3390/drones8080403
APA StyleSaeidi, T., Saleh, S., Timmons, N., Al-Gburi, A. J. A., Karamzadeh, S., Althuwayb, A. A., Rashid, N., Kaaniche, K., Ben Atitallah, A., & Elhamrawy, O. I. (2024). Meta Surface-Based Multiband MIMO Antenna for UAV Communications at mm-Wave and Sub-THz Bands. Drones, 8(8), 403. https://doi.org/10.3390/drones8080403