Integration of UAV Digital Surface Model and HEC-HMS Hydrological Model System in iRIC Hydrological Simulation—A Case Study of Wu River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Research Process
2.4. HEC-HMS Model
2.5. IRIC Model
2.6. UAV-DSM and Orthophoto
3. Results
3.1. Calibration and Validation of HEC-HMS Model
3.2. UAV-DSM Accuracy Assessment
3.3. IRIC Model Simulations
3.3.1. 20 m DEM Simulation Results
3.3.2. 10 m, 5 m, and 2 m DSM Simulation Results
3.4. Flood Simulation and Recurrence Intervals
3.4.1. Flood Simulation for Different Recurrence Intervals
3.4.2. Flood Analysis for Recurrence Intervals
4. Discussion
4.1. Applicability of the HEC-HMS Model
4.2. Effectiveness of Using UAV-DSM
4.3. Improvement of iRIC Model Simulation by Using UAV-DSM
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Myhre, G.; Alterskjær, K.; Stjern, C.W.; Hodnebrog, Ø.; Marelle, L.; Samset, B.H.; Sillmann, J.; Schaller, N.; Fischer, E.; Schulz, M.; et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 2019, 9, 16063. [Google Scholar] [CrossRef]
- Wang, B.; Biasutti, M.; Byrne, M.P.; Castro, C.; Chang, C.-P.; Cook, K.; Fu, R.; Grimm, A.M.; Ha, K.-J.; Hendon, H.; et al. Monsoons climate change assessment. Bull. Am. Meteorol. Soc. 2021, 102, E1–E19. [Google Scholar] [CrossRef]
- Nyatuame, M.; Agodzo, S. Analysis of extreme rainfall events (drought and flood) over Tordzie Watershed in the Volta Region of Ghana. J. Geosci. Environ. Prot. 2017, 5, 275–295. [Google Scholar] [CrossRef]
- Handwerger, A.L.; Huang, M.H.; Fielding, E.J.; Booth, A.M.; Bürgmann, R. A shift from drought to extreme rainfall drives a stable landslide to catastrophic failure. Sci. Rep. 2019, 9, 1569. [Google Scholar] [CrossRef]
- Gioia, A.; Totaro, V.; Bonelli, R.; Esposito, A.A.; Balacco, G.; Iacobellis, V. Flood susceptibility evaluation on ephemeral streams of Southern Italy: A case study of Lama Balice. In Proceedings of the Computational Science and Its Applications–ICCSA 2018: 18th International Conference 2018, Melbourne, VIC, Australia, 2–5 July 2018; Proceedings, Part V 18. Springer International Publishing: Cham, Switzerland, 2018; pp. 334–348. [Google Scholar] [CrossRef]
- Maxwell, S.L.; Butt, N.; Maron, M.; McAlpine, C.A.; Chapman, S.; Ullmann, A.; Segan, D.B.; Watson, J.E.M. Conservation implications of ecological responses to extreme weather and climate events. Divers. Distrib. 2019, 25, 613–625. [Google Scholar] [CrossRef]
- Henny, L.; Thorncroft, C.D.; Hsu, H.H.; Bosart, L.F. Extreme rainfall in Taiwan: Seasonal statistics and trends. J. Clim. 2021, 34, 4711–4731. [Google Scholar] [CrossRef]
- Dilley, M. Natural Disaster Hotspots: A Global Risk Analysis; World Bank Publications: Washington, DC, USA, 2005; Volume 5. [Google Scholar] [CrossRef]
- Shiu, C.J.; Liu, S.C.; Chen, J.P. Diurnally asymmetric trends of temperature, humidity, and precipitation in Taiwan. J. Clim. 2009, 22, 5635–5649. [Google Scholar] [CrossRef]
- Wu, Y.C.; Wang, S.Y.S.; Yu, Y.C.; Kung, C.Y.; Wang, A.H.; Los, S.A.; Huang, W.R. Climatology and change of extreme precipitation events in Taiwan based on weather types. Int. J. Climatol. 2019, 39, 5351–5366. [Google Scholar] [CrossRef]
- Tseng, C.W.; Song, C.E.; Wang, S.F.; Chen, Y.C.; Tu, J.Y.; Yang, C.J.; Chuang, C.W. Application of high-resolution radar rain data to the predictive analysis of landslide susceptibility under climate change in the Laonong Watershed, Taiwan. Remote Sens. 2020, 12, 3855. [Google Scholar] [CrossRef]
- Chen, Y.J.; Lin, H.J.; Liou, J.J.; Cheng, C.T.; Chen, Y.M. Assessment of flood risk map under climate change RCP8. 5 scenarios in Taiwan. Water 2022, 14, 207. [Google Scholar] [CrossRef]
- Sahu, S.A.L.I.L.; Pyasi, S.K.; Galkate, R.V. A review on the HEC-HMS rainfall-runoff simulation model. Int. J. Agric. Sci. Res. 2020, 10, 183–190. [Google Scholar] [CrossRef]
- Rai, P.K.; Dhanya, C.T.; Chahar, B.R. Coupling of 1D models (SWAT and SWMM) with 2D model (iRIC) for mapping inundation in Brahmani and Baitarani river delta. Nat. Hazards 2018, 92, 1821–1840. [Google Scholar] [CrossRef]
- Kumar, S.; Agarwal, A.; Villuri, V.G.K.; Pasupuleti, S.; Kumar, D.; Kaushal, D.R.; Gosain, A.K.; Bronstert, A.; Sivakumar, B. Constructed wetland management in urban catchments for mitigating floods. Stoch. Environ. Res. Risk Assess. 2021, 35, 2105–2124. [Google Scholar] [CrossRef]
- Zhang, K.; Shalehy, M.H.; Ezaz, G.T.; Chakraborty, A.; Mohib, K.M.; Liu, L. An integrated flood risk assessment approach based on coupled hydrological-hydraulic modeling and bottom-up hazard vulnerability analysis. Environ. Model. Softw. 2022, 148, 105279. [Google Scholar] [CrossRef]
- Halwatura, D.; Najim, M.M.M. Application of the HEC-HMS model for runoff simulation in a tropical catchment. Environ. Model. Softw. 2013, 46, 155–162. [Google Scholar] [CrossRef]
- Lin, Q.; Lin, B.; Zhang, D.; Wu, J. Web-based prototype system for flood simulation and forecasting based on the HEC-HMS model. Environ. Model. Softw. 2022, 158, 105541. [Google Scholar] [CrossRef]
- Olayinka, D.; Irivbogbe, H. Estimation of Hydrological Outputs using HEC-HMS and GIS. NJ Environ. Sci. Technol. 2017, 1, 390–402. [Google Scholar] [CrossRef]
- Janicka, E.; Kanclerz, J. Assessing the Effects of Urbanization on Water Flow and Flood Events Using the HEC-HMS Model in the Wirynka River Catchment, Poland. Water 2022, 15, 86. [Google Scholar] [CrossRef]
- Liu, W.C.; Hsieh, T.H.; Liu, H.M. Flood risk assessment in urban areas of southern Taiwan. Sustainability 2021, 13, 3180. [Google Scholar] [CrossRef]
- Hussain, F.; Wu, R.S.; Yu, K.C. Application of physically based semi-distributed hec-hms model for flow simulation in tributary catchments of kaohsiung area taiwan. J. Mar. Sci. Technol. 2021, 29, 4. [Google Scholar] [CrossRef]
- Nelson, J.M.; Shimizu, Y.; Abe, T.; Asahi, K.; Gamou, M.; Inoue, T.; Iwasaki, T.; Kakinuma, T.; Kawamura, S.; Kimura, I.; et al. The international river interface cooperative: Public domain flow and morphodynamics software for education and applications. Adv. Water Resour. 2016, 93, 62–74. [Google Scholar] [CrossRef]
- Shokory, J.A.N.; Tsutsumi, J.I.G.; Sakai, K. Flood modeling and simulation using iRIC: A case study of Kabul City. E3S Web Conf. 2016, 7, 04003. [Google Scholar] [CrossRef]
- Dhanapala, L.; Gunarathna, M.H.J.P.; Kumari, M.K.N.; Ranagalage, M.; Sakai, K.; Meegastenna, T.J. Towards Coupling of 1D and 2D Models for Flood Simulation—A Case Study of Nilwala River Basin, Sri Lanka. Hydrology 2022, 9, 17. [Google Scholar] [CrossRef]
- Kumar, A.; Khosa, R.; Gosian, A.K. A Framework for Assessment of Flood Conditions Using Hydrological and Hydrodynamic Modeling Approach. Water 2023, 15, 1371. [Google Scholar] [CrossRef]
- Kojima, H.; Kogo, Y.; Shimada, K.; Shoda, D.; Suzuki, N. Inundation analysis of agricultural reservoirs destroyed by the 2011 off the Pacific coast of Tohoku earthquake. Trans. Jpn. Soc. Agric. Rural Eng. 2016, 84, I_93–I_101. [Google Scholar] [CrossRef]
- Jamrussri, S.; Toda, Y. Simulating past severe flood events to evaluate the effectiveness of nonstructural flood countermeasures in the upper Chao Phraya River Basin, Thailand. J. Hydrol. Reg. Stud. 2017, 10, 82–94. [Google Scholar] [CrossRef]
- El Fels, A.E.A.; Alaa, N.; Bachnou, A.; Rachidi, S. Flood frequency analysis and generation of flood hazard indicator maps in a semi-arid environment, case of Ourika watershed (western High Atlas, Morocco). J. Afr. Earth Sci. 2018, 141, 94–106. [Google Scholar] [CrossRef]
- Savitri, A.; Budieny, H.; Bagaskara, F.; Lestari, F.M. Numerical Analysis in Dengkeng River Using Nays2DFlood. Civ. Eng. Archit. 2020, 8, 533–540. [Google Scholar] [CrossRef]
- Uwineza, A.; Irie, M. Flood analysis for estimating the impact of rainwater harvesting system installation using hydrological models. Case study: Nyabugogo valley, Kigali. J. Arid Land Stud. 2022, 32, 145–149. [Google Scholar] [CrossRef]
- Takayama, R.; Nakamura, R.; Esteban, M.; Mäll, M.; Ohizumi, K. Pseudo global warming experiment of flood inundation in the upper White Volta River, Ghana. J. Hydrol. Reg. Stud. 2023, 45, 101297. [Google Scholar] [CrossRef]
- Wing, O.E.; Bates, P.D.; Sampson, C.C.; Smith, A.M.; Johnson, K.A.; Erickson, T.A. Validation of a 30 m resolution flood hazard model of the conterminous U nited S tates. Water Resour. Res. 2017, 53, 7968–7986. [Google Scholar] [CrossRef]
- Ward, P.J.; Jongman, B.; Salamon, P.; Simpson, A.; Bates, P.; De Groeve, T.; Muis, S.; de Perez, E.C.; Rudari, R.; Trigg, M.A.; et al. Usefulness and limitations of global flood risk models. Nat. Clim. Change 2015, 5, 712–715. [Google Scholar] [CrossRef]
- Polat, N.; Uysal, M. DTM generation with UAV based photogrammetric point cloud. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 77–79. [Google Scholar] [CrossRef]
- Arif, F.; Maulud, K.A.; Ab Rahman, A.A. Generation of digital elevation model through aerial technique. IOP Conf. Ser. Earth Environ. Sci. 2018, 169, 012093. [Google Scholar] [CrossRef]
- Manfreda, S.; McCabe, M.F.; Miller, P.E.; Lucas, R.; Madrigal, V.P.; Mallinis, G.; Ben Dor, E.; Helman, D.; Estes, L.; Ciraolo, G.; et al. On the use of unmanned aerial systems for environmental monitoring. Remote Sens. 2018, 10, 641. [Google Scholar] [CrossRef]
- Annis, A.; Nardi, F.; Petroselli, A.; Apollonio, C.; Arcangeletti, E.; Tauro, F.; Belli, C.; Bianconi, R.; Grimaldi, S. UAV-DEMs for small-scale flood hazard mapping. Water 2020, 12, 1717. [Google Scholar] [CrossRef]
- Utlu, M.; Özdemir, H. How much spatial resolution do we need to model a local flood event? Benchmark testing based on UAV data from Biga River (Turkey). Arab. J. Geosci. 2020, 13, 1293. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S.; Kim, T.W.; Kim, D. Estimation of flooded area using satellite imagery and DSM Terrain data. J. Korean Soc. Hazard Mitig. 2019, 19, 471–483. [Google Scholar] [CrossRef]
- Su, Y.F.; Lin, Y.T.; Jang, J.H.; Han, J.Y. High-Resolution Flood Simulation in Urban Areas Through the Application of Remote Sensing and Crowdsourcing Technologies. Front. Earth Sci. 2022, 9, 756198. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Shimizu, Y.; Inoue, T.; Suzuki, E.; Kawamura, S.; Iwasaki, T.; Hamaki, M.; Yoshida, T. Nays2D Flood Solver Manual; The International River Interface Cooperative (iRIC): Hokkaido, Japan, 2015; pp. 1–51. [Google Scholar]
- Tassew, B.G.; Belete, M.A.; Miegel, K. Application of HEC-HMS model for flow simulation in the Lake Tana basin: The case of Gilgel Abay catchment, upper Blue Nile basin, Ethiopia. Hydrology 2019, 6, 21. [Google Scholar] [CrossRef]
- Coveney, S.; Roberts, K. Lightweight UAV digital elevation models and orthoimagery for environmental applications: Data accuracy evaluation and potential for river flood risk modelling. Int. J. Remote Sens. 2017, 38, 3159–3180. [Google Scholar] [CrossRef]
Flight Date in 2023 | 28 March and 6 April | 3 May | 12 June |
---|---|---|---|
Image Overlap Rate | 75% | 75% | 75% |
Number of Images | 1802 | 1918 | 1687 |
Flight Altitude (m) | 100 | 100 | 100 |
Image Resolution (cm/pix) | 5.87 | 5.94 | 5.87 |
Spatial Coverage (km2) | 1.6 | 1.74 | 1.73 |
Parameter | Method | Unit | Value (Min/Max) |
---|---|---|---|
Curve Number | SCS-CN | dimensionless | 62.87/79.16 |
Impervious | % | 50 | |
Lag Time | SCS-UH | min | 52.25/154.76 |
Initial Discharge | Recession | cm | 3 |
Recession Constant | dimensionless | 0.95 | |
Ratio to Peak | dimensionless | 0.01 | |
Channel Length | Muskingum–Cunge | m | 810.0/9310.1 |
Channel Slope | m | 38.8/693.7 | |
Channel Width | m/m | 0.0/0.02 | |
Manning’s Coefficient | dimensionless | 0.04 |
Calibration | Validation | ||
---|---|---|---|
Typhoon Saola in 2012 | Typhoon Soulik in 2013 | Heavy Rainfall on 20 May 2019 | |
Simulated Discharge (cm) | 3791.2 | 3262.5 | 2856.8 |
Observed Discharge (cm) | 3988.7 | 3206.4 | 2951.2 |
NSE | 0.93 | 0.88 | 0.9 |
PEPF (%) | 4.94 | 1.75 | 3.2 |
Type | Flight Date | RMSEX (cm) | RMSEY (cm) | RMSEZ (cm) | RMSEXYZ (cm) |
---|---|---|---|---|---|
GCP | 28 March and 6 April | 1.62 | 1.25 | 0.54 | 2.12 |
5/3 | 2.96 | 2.77 | 0.59 | 4.10 | |
6/12 | 2.12 | 2.31 | 0.53 | 3.18 | |
Average | 2.24 | 2.11 | 0.55 | 3.13 | |
CP | 28 March and 6 April | 3.26 | 3.91 | 3.83 | 6.37 |
3 May | 5.21 | 6.22 | 3.46 | 8.82 | |
12 June | 3.65 | 4.27 | 3.14 | 6.44 | |
Average | 4.04 | 4.80 | 3.47 | 7.21 |
Flood Point | Report Agency | Flood Depth (m) |
---|---|---|
A | Citizen report | - |
B | EMIC | 0.6 |
C | EMIC | 1 |
D | EMIC | 0.5 |
E | Third River Management Office | 0.7 |
F | EMIC | 0.7 |
G | EMIC | 0.5 |
Flood Point | Flood Depth (m) | Simulation Depth (m) | Difference (m) | RMSE (m) |
---|---|---|---|---|
A | - | 0.62 | - | 0.37 |
B | 0.6 | 0.56 | −0.05 | |
C | 1 | 0.5 | −0.5 | |
D | 0.5 | 0.28 | −0.23 | |
E | 0.7 | 0.14 | −0.56 | |
F | 0.7 | 0.26 | −0.45 | |
G | 0.5 | 0.6 | 0.1 |
Flood Point | Flood Depth (m) | 28 March and 6 April | 3 May | 12 June | |||
---|---|---|---|---|---|---|---|
Simulation Depth (m) | Difference (m) | Simulation Depth (m) | Difference (m) | Simulation Depth (m) | Difference (m) | ||
A | - | 4.23 | - | 3.09 | - | 6.09 | - |
B | 0.6 | 0.71 | 0.11 | 1.13 | 0.53 | 2.06 | 1.46 |
C | 1 | 0.24 | −0.76 | 0 | −1 | 0.47 | −0.54 |
D | 0.5 | 0.24 | −0.27 | 0.2 | −0.3 | 0.1 | −0.4 |
E | 0.7 | 0 | −0.7 | 0 | −0.7 | 0 | −0.7 |
F | 0.7 | 0.49 | −0.21 | 0.44 | −0.26 | 0.59 | −0.11 |
G | 0.5 | 0.21 | −0.29 | 0.33 | −0.17 | 0.21 | −0.29 |
RMSE | 0.462 | 0.571 | 0.725 |
Flood Point | Flood Depth (m) | 28 March and 6 April | 3 May | 12 June | |||
---|---|---|---|---|---|---|---|
Simulation Depth (m) | Difference (m) | Simulation Depth (m) | Difference (m) | Simulation Depth (m) | Difference (m) | ||
A | - | 0.46 | - | 0.39 | - | 0.32 | - |
B | 0.6 | 0.36 | −0.24 | 0.37 | −0.23 | 0.49 | −0.12 |
C | 1 | 0.49 | −0.51 | 0.54 | −0.46 | 0.28 | −0.72 |
D | 0.5 | 0.62 | 0.12 | 0.46 | −0.04 | 0.32 | −0.18 |
E | 0.7 | 0.16 | −0.54 | 0.22 | −0.48 | 0.3 | −0.4 |
F | 0.7 | 0.53 | −0.17 | 0.58 | −0.12 | 0.62 | −0.08 |
G | 0.5 | 0.15 | −0.36 | 0.54 | 0.04 | 0.2 | −0.3 |
RMSE | 0.361 | 0.293 | 0.372 |
Flood Point | Flood Depth (m) | 28 March and 6 April | 3 May | 12 June | |||
---|---|---|---|---|---|---|---|
Simulation Depth (m) | Difference (m) | Simulation Depth (m) | Difference (m) | Simulation Depth (m) | Difference (m) | ||
A | - | 0.27 | - | 0.24 | - | 0.26 | - |
B | 0.6 | 0.15 | −0.45 | 0.15 | −0.45 | 0.23 | −0.37 |
C | 1 | 0.53 | −0.47 | 0.6 | −0.4 | 0.64 | −0.36 |
D | 0.5 | 0.45 | −0.04 | 0.5 | −0.01 | 0.45 | −0.05 |
E | 0.7 | 0.73 | 0.03 | 0.78 | 0.08 | 0.81 | 0.11 |
F | 0.7 | 0.42 | −0.28 | 0.36 | −0.34 | 0.44 | −0.26 |
G | 0.5 | 0.47 | −0.03 | 0.4 | −0.1 | 0.41 | −0.09 |
RMSE | 0.291 | 0.286 | 0.243 |
Recurrence Intervals Food Depth (m) | ||||
---|---|---|---|---|
Flood Point | 10-Year | 25-Year | 50-Year | 100-Year |
A | 0.94 | 1.28 | 1.5 | 1.7 |
B | 0.21 | 0.45 | 0.62 | 0.81 |
C | 0.6 | 0.62 | 0.83 | 1.02 |
D | 0.4 | 0.43 | 0.44 | 0.46 |
E | 0.81 | 0.86 | 0.89 | 0.95 |
F | 0.23 | 0.29 | 0.38 | 0.42 |
G | 0.23 | 0.37 | 0.43 | 0.47 |
Flood Area of Recurrence Interval (m2) | Flood Area of Potential Inundation (m2) | Overlap Area (m2) | Overlap Rate (%) | ||
---|---|---|---|---|---|
10 (year) | 151,980.2 | 24 h 350 mm | 37,461.1 | 9031.6 | 24.1 |
100 (year) | 184,575.7 | 24 h 650 mm | 271,121.4 | 111,172.6 | 41 |
28 March and 6 April | 3 May | 12 June | ||||
---|---|---|---|---|---|---|
Resolution | RMSEA | RMSEL | RMSEA | RMSEL | RMSEA | RMSEL |
10 m | 0.46 | 0.42 | 0.57 | 0.41 | 0.47 | 0.43 |
5 m | 0.36 | 0.34 | 0.29 | 0.25 | 0.37 | 0.27 |
2 m | 0.29 | 0.14 | 0.29 | 0.18 | 0.24 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.-P.; Tsai, H.-P.; Chiang, L.-C. Integration of UAV Digital Surface Model and HEC-HMS Hydrological Model System in iRIC Hydrological Simulation—A Case Study of Wu River. Drones 2024, 8, 178. https://doi.org/10.3390/drones8050178
Huang Y-P, Tsai H-P, Chiang L-C. Integration of UAV Digital Surface Model and HEC-HMS Hydrological Model System in iRIC Hydrological Simulation—A Case Study of Wu River. Drones. 2024; 8(5):178. https://doi.org/10.3390/drones8050178
Chicago/Turabian StyleHuang, Yen-Po, Hui-Ping Tsai, and Li-Chi Chiang. 2024. "Integration of UAV Digital Surface Model and HEC-HMS Hydrological Model System in iRIC Hydrological Simulation—A Case Study of Wu River" Drones 8, no. 5: 178. https://doi.org/10.3390/drones8050178
APA StyleHuang, Y. -P., Tsai, H. -P., & Chiang, L. -C. (2024). Integration of UAV Digital Surface Model and HEC-HMS Hydrological Model System in iRIC Hydrological Simulation—A Case Study of Wu River. Drones, 8(5), 178. https://doi.org/10.3390/drones8050178