Adjuvants for Drone-Based Aerial Chemical Applications to Mitigate Off-Target Drift
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Characteristics of Adjuvants and Their Current Applications
2.3. Experimental Setup
2.4. Spray Experiments
2.5. Weather Conditions
2.6. Data Collection on Droplet Size and Speed
2.7. Data Analysis
3. Results
3.1. Adequacy of the Experimental Setup
3.2. Results of the Droplet Spectrum
3.3. Analysis of Drift Reduction in Aerial Application
3.4. On-Target Spray Coverage Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kirk, I.W. Aerial spray drift from different formulations of glyphosate. Trans. ASAE 2000, 43, 555. [Google Scholar] [CrossRef]
- Oliveira, R.B.D.; Antuniassi, U.R.; Mota, A.A.; Chechetto, R.G. Potential of adjuvants to reduce drift in agricultural spraying. Eng. Agric. 2013, 33, 986–992. [Google Scholar] [CrossRef]
- Butts, T.R.; Fritz, B.K.; Kouame, K.B.; Norsworthy, J.K.; Barber, L.T.; Ross, J.; Lorenz, G.M.; Thrash, B.C.; Bateman, N.R.; Adamczyk, J.J. Herbicide spray drift from ground and aerial applications: Implications for potential pollinator foraging sources. Sci. Rep. 2022, 12, 18017. [Google Scholar] [CrossRef] [PubMed]
- Reich, G.A.; Berner, W.H. Aerial Application Accidents 1968 to 1966 An Analysis of the Principal Factors. Arch. Environ. Health 1968, 17, 776–784. [Google Scholar] [CrossRef]
- Cantor, K.P.; Silberman, W. Mortality among aerial pesticide applicators and flight instructors: Follow-up from 1965–1988. Am. J. Ind. Med. 1999, 36, 239–247. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Zeng, A.; Song, J.; Xu, T.; Lv, X.; He, X. Effects of Adjuvants on Spraying Characteristics and Control Efficacy in Unmanned Aerial Application. Agriculture 2022, 12, 138. [Google Scholar] [CrossRef]
- Xiao, Q.; Xin, F.; Lou, Z.; Zhou, T.; Wang, G.; Han, X.; Lan, Y.; Fu, W. Effect of Aviation Spray Adjuvants on Defoliant Droplet Deposition and Cotton Defoliation Efficacy Sprayed by Unmanned Aerial Vehicles. Agronomy 2019, 9, 217. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, R.; Yu, M.; Liu, Y.; Ma, Y.; Guo, X.; Gu, Y.; Formstone, C.; Xu, Y.; Wu, X. Enhanced dosage delivery of pesticide under unmanned aerial vehicle condition for peanut plant protection: Tank-mix adjuvants and formulation improvement. Pest Manag. Sci. 2023, 80, 1632–1644. [Google Scholar] [CrossRef]
- Zhu, W.; Schmehl, D.R.; Mullin, C.A.; Frazier, J.L. Four Common Pesticides, Their Mixtures and a Formulation Solvent in the Hive Environment Have High Oral Toxicity to Honeybee Larvae. PLoS ONE 2014, 9, e77547. [Google Scholar] [CrossRef]
- Van de Merwe, J.P.; Neale, P.A.; Melvin, S.D.; Leusch, F.D.L. In vitro bioassays reveal that additives are significant contributors to the toxicity of commercial household pesticides. Aquat. Toxicol. 2018, 199, 263–268. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, J.; Wu, J.; Yu, R.; Zhang, Y.; Sun, L.; Gao, Y. Acute Toxicity and Ecotoxicological Risk Assessment of Three Volatile Pesticide Additives on the Earthworm—Eisenia fetida. Int. J. Environ. Res. Public Health 2021, 18, 11232. [Google Scholar] [CrossRef] [PubMed]
- Straw, E.A.; Thompson, L.J.; Leadbeater, E.; Brown, M.J.F. Inert ingredients are understudied, potentially dangerous to bees and deserve more research attention. Proc. R. Soc. Biol. Sci. 2022, 289, 20212353. [Google Scholar] [CrossRef] [PubMed]
- Desneux, N.; Decourtye, A.; Delpuech, J.M. The sublethal effect of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Bayo, F.; Goka, K. Pesticide residue and bees—A risk assessment. PLoS ONE 2014, 9, e94482. [Google Scholar] [CrossRef] [PubMed]
- Vidau, C.; Diogon, M.; Aufauvre, J.; Fontbonne, R.; Viguès, B.; Brunet, J.-L.; Texier, C.; Biron, D.G.; Blot, N.; El Alaoui, H.; et al. Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS ONE 2011, 6, e21550. [Google Scholar] [CrossRef]
- Ellis, J. The honey bee crises. Outlooks Pest Manag. 2012, 23, 35–40. [Google Scholar] [CrossRef]
- Di Prisco, G.; Cavaliere, V.; Annoscia, D.; Varricchio, P.; Caprio, E.; Nazzi, F.; Gargiulo, G.; Pennacchio, F. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc. Natl. Acad. Sci. USA 2013, 110, 18466–18471. [Google Scholar] [CrossRef]
- Williams, G.R.; Troxler, A.; Retschnig, G.; Roth, K.; Yañez, O.; Shutler, D.; Neumann, P.; Gauthier, L. Neonicotinoid pesticides severely affect honey bee queens. Sci. Rep. 2015, 5, 14621. [Google Scholar] [CrossRef]
- Tison, L.; Hahn, M.-L.; Holtz, S.; Rößner, A.; Greggers, U.; Bischoff, G.; Menzel, R. Honey bees’ behavior is impaired by chronic exposure to the neonicotinoid thiacloprid in the field. Environ. Sci. Technol. 2016, 50, 7218–7227. [Google Scholar] [CrossRef]
- Wu-Smart, J.; Spivak, M. Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development. Sci. Rep. 2016, 6, 32108. [Google Scholar] [CrossRef]
- Liu, Z.; Jiao, Y.; Wang, Y.; Zhou, C.; Zhang, Z. Polysaccharide-based nanoparticles as drug delivery systems. Adv. Drug Deliv. Rev. 2008, 60, 1650–1662. [Google Scholar] [CrossRef] [PubMed]
- Raemdonck, K.; Martens, T.F.; Braeckmans, K.; Demeester, J.; De Smedt, S.C. Polysaccharide-based nucleic acid nanofor-mulations. Adv. Drug Deliv. Rev. 2013, 65, 1123–1147. [Google Scholar] [CrossRef]
- Hassani, L.N.; Hendra, F.; Bouchemal, K. Auto-associative amphiphilic polysaccharides as drug delivery systems. Drug Discov. Today 2012, 17, 608–614. [Google Scholar] [CrossRef]
- Kannan, N.; Read, Q.; Zhang, W. An algae-based polymer material as a pesticide adjuvant for mitigating off-target drift. Heliyon 2024, 10, e35510. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Scheibener, S.; George, J.; Kannan, N.; Portilla, M. Assessing the Efficacy of Sodium Alginate and Polyacrylamide as Spray Adjuvants Combined with Bifenthrin and Imidacloprid against Lygus lineolaris and Piezodorus guildinii. Agriculture 2024, 14, 535. [Google Scholar] [CrossRef]
- Chaturvedi, K.; Ganguly, K.; More, U.A.; Reddy, K.R.; Dugge, T.; Naik, B.; Aminabhavi, T.M.; Noolvi, M.N. Chapter 3: Sodium alginate in drug delivery and biomedical areas. In Natural Polysaccharides in Drug Delivery and Biomedical Applications; Hasnain, M.S., Nayak, A.K., Eds.; Elsevier Publications: Amsterdam, The Netherlands, 2019; ISBN 978-0-12-817055-7. [Google Scholar] [CrossRef]
- PubChem [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. Compound Summary for Sodium Alginate. 2004. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Sodium-Alginate (accessed on 21 December 2023).
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2023 update. Nucleic Acids Res. 2023, 51, D1373–D1380. [Google Scholar] [CrossRef]
- US Food & Drug Administration. CFR—Code of Federal Regulations Title 21. 2017, Volume 3. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=184.1724 (accessed on 15 October 2024).
- Bampidis, V.; Azimonti, G.; Bastos, M.L.; Christensen, H.; Dusemund, B.; Durjava, M.F.; Kouba, M.; López-Alonso, M.; Puente, S.L.; Marcon, F.; et al. Safety efficacy of a feed additive consisting of sodiumalginate for all animal species (ALGAIA). Eur. Food Saf. Auth. J. 2022, 20, 7164. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA); Substance Registry Services (SRS). Sodium Alginate, CAS Number: 9005-38-3. 2023. Available online: https://cdxapps.epa.gov/oms-substance-registry-services/substance-details/162305 (accessed on 21 December 2023).
- Qin, Y. Alginate fibres: An overview of the production processes and applications in wound management. Polym. Int. 2008, 57, 171–180. [Google Scholar] [CrossRef]
- Motwani, S.K.; Chopra, S.; Talegaonkar, S.; Kohli, K.; Ahmad, F.J.; Khar, R.K. Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: Formulation, optimisation and in vitro characterisation. Eur. J. Pharm. Biopharm. 2008, 68, 513–525. [Google Scholar] [CrossRef]
- Timmons, J. ActivHeal AquaFiber: A new soft, conformable highly absorbent dressing for use with chronic wounds. Wounds UK 2008, 4, 88–91. [Google Scholar]
- United States Food and Drug Administration (USFDA). Guidance for Industry Acrylamide in Foods; (Docket Number: FDA-2013-D-0715); Office of Food Safety, HFS-300, Center for Food Safety and Applied Nutrition, Food and Drug Administration: College Park, MD, USA, 2016. [Google Scholar]
- Srinivasan, R.; Vankar, P.S.; Mishra, A. Treatment of textile effluent using sodium alginate as flocculant. Colourage 2001, 48, 29–32. [Google Scholar]
- Srinivasan, R.; Mishra, A. Okra (Hibiscus esculentus) and Fenugreek (Trigonella foenum graceum) mucilage: Characterization and application as flocculants for textile effluent treatment. Chin. J. Polym. Sci. 2008, 26, 679–687. [Google Scholar] [CrossRef]
- El-Molla, M.M.; Abdel Rehman, A.A.; Abd El-Talouth, I. Chemical modification of fenugreek gum. I. Carbamoylethylation. Am. Dyest. Report. 1998, 87, 56. [Google Scholar]
- Srinivasan, R.; Mishra, A.; McKinney, J. Polysaccharide Agents and Methods of Their Use for Removing Solids from Water. Patent USP No. 10442710, 15 October 2019. [Google Scholar]
- Kowalczuck and Dryzmala (details missing) Przemyslaw B. Kowalczuk and Jan Drzymala, Physical meaning of the Sauter mean diameter of spherical particulate matter. Part. Sci. Technol. 2016, 34, 645–647. [Google Scholar] [CrossRef]
- Oxford Lasers Visisize P15 Research and Development. Available online: http://aams-salvarani.com/en/products/oxford-laser-p15 (accessed on 3 May 2024).
- VisiSize P15 Portable Droplet Sizing and Characterization System. Available online: https://www.oxfordlasers.com/laser-imaging/visisize-p15 (accessed on 3 May 2024).
- Hilz, E.; Vermeer, A.W.P. Spray drift review: The extent to which a formulation can contribute to spray drift reduction. Crop Prot. 2013, 44, 75–83. [Google Scholar] [CrossRef]
- Hong, S.-w.; Park, J.; Jeong, H.; Lee, S.; Choi, L.; Zhao, L.; Zhu, H. Fluid Dynamic Approaches for Prediction of Spray Drift from Ground Pesticide Applications: A Review. Agronomy 2021, 11, 1182. [Google Scholar] [CrossRef]
- Zhu, H.; Reichard, D.L.; Fox, R.D.; Brazee, R.D.; Ozkan, H.E. Simulation of discrete sizes of water droplets from field sprayers. Trans. ASAE 1994, 37, 1401–1407. [Google Scholar] [CrossRef]
- Hewitt, A. Adjuvant use for the management of pesticide drift, leaching and runoff. Pest Manag. Sci. 2024, 80, 4819–4827. [Google Scholar] [CrossRef]
- Hu, H.; Ma, Y.; Song, X.; Wang, D.; Ren, X.; Wu, C.; Liu, C.; Ma, X.; Shan, Y.; Meng, Y.; et al. Tank-Mix Adjuvants Enhance Pesticide Efficacy by Improving Physicochemical Properties and Spraying Characteristics for Application to Cotton with Unmanned Aerial Vehicles. ACS Omega 2024, 9, 31011–31025. [Google Scholar] [CrossRef]
Item | pH | Density (g/cm3) | Dynamic Viscosity (mPas) | Dynamic Surface Tension (mN/m) a |
---|---|---|---|---|
DI water | 7.00 | 0.9968 | 3.47 | 75.3–74.9 |
Sodium alginate 1.25 g/L | 6.86 | 0.9968 | 5.70 | 76.0–75.0 |
Sodium alginate 2.5 g/L | 6.92 | 0.9971 | 7.53 | 76.0–75.0 |
Fenugreek polymer 0.5 g/L | 6.56 | 0.9956 | 3.83 | 74.0–73.5 |
Fenugreek polymer 1.0 g/L | 6.58 | 0.9960 | 4.53 | 74.5–73.5 |
Name a | Notation | Concentration (g/L) b | Control/ Treatment |
---|---|---|---|
Deionized water | Water | Not applicable | Control |
Sodium alginate | SA | 1.25 | Treatment |
Sodium alginate | SA | 2.50 | Treatment |
Fenugreek polymer | FP | 0.50 | Treatment |
Fenugreek polymer | FP | 1.00 | Treatment |
Treatment | Trial | Wind Speed (m/s) | Air Temperature (°C) | Relative Humidity (%) |
---|---|---|---|---|
DI water | 1 | 4.2 | 23.9 | 73 |
DI water | 2 | 3.3 | 23.9 | 73 |
DI water | 3 | 3.7 | 23.9 | 73 |
DI water | 4 | 4.2 | 23.9 | 73 |
Fenugreek 0.5 g/L | 1 | 4.2 | 24.4 | 72 |
Fenugreek 0.5 g/L | 2 | 5.1 | 24.4 | 71 |
Fenugreek 0.5 g/L | 3 | 4.7 | 24.4 | 73 |
Fenugreek 0.5 g/L | 4 | 5.6 | 24.4 | 73 |
Fenugreek 1 g/L | 1 | 5.1 | 24.4 | 71 |
Fenugreek 1 g/L | 2 | 3.3 | 24.4 | 69 |
Fenugreek 1 g/L | 3 | 4.7 | 24.4 | 70 |
Fenugreek 1 g/L | 4 | 5.1 | 24.4 | 70 |
Sodium alginate 1.25 g/L | 1 | 3.3 | 24.4 | 70 |
Sodium alginate 1.25 g/L | 2 | 4.2 | 24.4 | 71 |
Sodium alginate 1.25 g/L | 3 | 3.3 | 24.4 | 70 |
Sodium alginate 1.25 g/L | 4 | 4.2 | 24.4 | 69 |
Sodium alginate 2.5 g/L | 1 | 5.1 | 25.0 | 69 |
Sodium alginate 2.5 g/L | 2 | 5.1 | 25.0 | 69 |
Sodium alginate 2.5 g/L | 3 | 6.1 | 25.0 | 67 |
Sodium alginate 2.5 g/L | 4 | 6.1 | 25.0 | 69 |
Droplet Diameter (µm) | Water (None) | SA (1.25 g/L) | SA (2.5 g/L) | FP (0.5 g/L) | FP (1.0 g/L) |
---|---|---|---|---|---|
Minimum | 82.6 | 107.9 | 94.4 | 97.6 | 119.3 |
DV10 | 133.7 | 161.2 | 166.7 | 150.7 | 166.7 |
DV25 | 172.3 | 197.0 | 203.7 | 190.5 | 210.6 |
DV32 | 197.0 | 217.8 | 217.8 | 210.6 | 232.8 |
DV50 | 257.4 | 275.2 | 275.2 | 279.9 | 304.3 |
DV75 | 391.1 | 384.6 | 378.2 | 411.2 | 439.6 |
DV90 | 502.5 | 482.8 | 454.5 | 519.6 | 555.6 |
Maximum | 635.1 | 750.8 | 726.1 | 635.1 | 679.1 |
Average | 289.8 | 302.0 | 296.9 | 308.3 | 333.5 |
Relative span | 1.00 | 0.91 | 0.82 | 0.92 | 0.84 |
Droplet Velocity (m/s) | Water (None) | SA (1.25 g/L) | SA (2.5 g/L) | FP (0.5 g/L) | FP (1.0 g/L) |
---|---|---|---|---|---|
Minimum | 0.93 | 1.62 | 2.36 | 1.21 | 1.21 |
10th percentile | 2.37 | 2.52 | 3.03 | 2.43 | 2.36 |
25th percentile | 2.65 | 2.72 | 3.09 | 2.81 | 2.75 |
32nd percentile | 2.87 | 2.83 | 3.13 | 3.07 | 2.87 |
50th percentile | 3.33 | 3.15 | 3.24 | 3.67 | 3.25 |
75th percentile | 4.01 | 3.81 | 3.68 | 4.42 | 3.80 |
90th percentile | 4.50 | 4.36 | 4.11 | 4.84 | 4.20 |
Maximum | 10.80 | 9.21 | 8.07 | 10.00 | 8.79 |
Average | 4.95 | 4.65 | 4.49 | 5.23 | 4.51 |
Spray Solution | Concentration (g/L) | Driftable Volume (% of Total) |
---|---|---|
Water | None | 14.5 |
Sodium alginate | 1.25 | 14.4 |
Sodium alginate | 2.50 | 8.3 |
Fenugreek polymer | 0.50 | 7.7 |
Fenugreek polymer | 1.00 | 2.3 |
Treatment | Concentration (g/L) | Coverage a (%) | Drops/ cm2 | Droplet Speed b (m/s) |
---|---|---|---|---|
Water | None | 2.74 | 15.4 | 4.4 |
SA | 1.25 | 2.47 | 8.1 | 3.9 |
SA | 2.50 | 2.18 | 6.7 | 3.9 |
FP | 0.50 | 3.14 | 9.1 | 4.7 |
FP | 1.00 | 3.00 | 6.1 | 4.4 |
Treatment a | Mortality of Honeybees b |
---|---|
Water | 0.0 |
Bifenthrin alone | 52.5 |
Polyacrylamide alone | 0.0 |
Sodium alginate alone | 2.1 |
Bifenthrin and polyacrylamide | 29.4 |
Bifenthrin and sodium alginate | 8.8 |
Treatment | Remarks | DV50 (µm) a | Coverage (%) b |
---|---|---|---|
Fluometuron alone | Off-target | NA | 8.6 |
Fluometuron and sodium alginate | Off-target | NA | 7.6 |
Liberty alone | On-target | 467 | NA |
Liberty and sodium alginate | On-target | 474 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kannan, N.; Martin, D.; Srinivasan, R.; Zhang, W. Adjuvants for Drone-Based Aerial Chemical Applications to Mitigate Off-Target Drift. Drones 2024, 8, 667. https://doi.org/10.3390/drones8110667
Kannan N, Martin D, Srinivasan R, Zhang W. Adjuvants for Drone-Based Aerial Chemical Applications to Mitigate Off-Target Drift. Drones. 2024; 8(11):667. https://doi.org/10.3390/drones8110667
Chicago/Turabian StyleKannan, Narayanan, Daniel Martin, Rajani Srinivasan, and Weiqiang Zhang. 2024. "Adjuvants for Drone-Based Aerial Chemical Applications to Mitigate Off-Target Drift" Drones 8, no. 11: 667. https://doi.org/10.3390/drones8110667
APA StyleKannan, N., Martin, D., Srinivasan, R., & Zhang, W. (2024). Adjuvants for Drone-Based Aerial Chemical Applications to Mitigate Off-Target Drift. Drones, 8(11), 667. https://doi.org/10.3390/drones8110667