Automated Unmanned Aerial System for Camera-Based Semi-Automatic Triage Categorization in Mass Casualty Incidents
Abstract
:1. Introduction
2. Materials and Methods
2.1. UAS Triage System
2.1.1. MCI Concept
2.1.2. UAS Triage Algorithm
2.2. Assessment of Body Pose and Movement
- (i)
- Data acquisition and image pre-processing: adjustments to the system’s parameters prior to taking measurements and preparing the captured video frames;
- (ii)
- Detection and tracking of body key points: temporal tracking of relevant body key points and joints;
- (iii)
- Classification of body pose and movement detection: final step of pose classification and movement detection to be used for triage.
2.2.1. Data Acquisition and Image Pre-Processing
2.2.2. Detection and Tracking of Body Key Points
2.2.3. Classification of Body Pose and Movement Detection
2.3. Assessment of RR
- (i)
- Data acquisition and image pre-processing: System parameter adjustments made prior to conducting measurements and preparing the captured video frames;
- (ii)
- Detection and tracking of chest region: Temporal tracking of relevant chest region;
- (iii)
- Detection and tracking of chest region key points: Temporal tracking of relevant key points within the tracked chest region;
- (iv)
- Extraction of respiratory curves: Extraction and refinement of respiratory curves obtained through the temporal key point tracking;
- (v)
- RR assessment: Final step of assessing the RR for automated triage through spectral analysis.
2.3.1. Data Acquisition and Image Pre-Processing
2.3.2. Detection and Tracking of Chest Region
Algorithm 1 Consecutive Affine Image Warping |
|
2.3.3. Extraction of Respiratory Curves
2.3.4. Respiratory Rate Assessment
2.4. Experimental Setup
2.4.1. Flight System Sensors
2.4.2. Reference Telemetry
2.4.3. Study Protocol for Pose Detection
3. Results
3.1. Recording Conditions
3.2. Assessment of Body Pose
3.3. Assessment of Body Movement
3.4. Assessment of Respiratory Rate
3.5. Assessment of Heart Rate
3.6. Triage Categorization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
UAS | unmanned aerial system |
MCI | mass-casualty incident |
HR | heart rate |
RR | respiratory rate |
rPPG | remote photoplethysmography |
ROI | Region of Interest |
GLM | Generalized Linear Modelling |
SNR | Signal-to-Noise Ratio |
RMSE | Root-Mean-Square Error |
bpm | beats per minute/breaths per minute |
References
- Follmann, A.; Ohligs, M.; Hochhausen, N.; Beckers, S.K.; Rossaint, R.; Czaplik, M. Technical support by smart glasses during a mass casualty incident: A randomized controlled simulation trial on technically assisted triage and telemedical app use in disaster medicine. J. Med. Internet Res. 2019, 21, e11939. [Google Scholar] [CrossRef]
- Roig, F.J.E. Drones at the service of emergency responders: Rather more than more toys. Emer. Rev. Soc. Esp. Med. Emerg. 2016, 28, 73–74. [Google Scholar]
- Konert, A.; Smereka, J.; Szarpak, L. The use of drones in emergency medicine: Practical and legal aspects. Emerg. Med. Int. 2019, 2019, 3589792. [Google Scholar] [CrossRef]
- Abrahamsen, H.B. A remotely piloted aircraft system in major incident management: Concept and pilot, feasibility study. BMC Emerg. Med. 2015, 15, 12. [Google Scholar] [CrossRef]
- Rosser, J.C., Jr.; Vignesh, V.; Terwilliger, B.A.; Parker, B.C. Surgical and medical applications of drones: A comprehensive review. J. Soc. Laparoendosc. Surg. 2018, 22, e2018. [Google Scholar] [CrossRef]
- Lu, J.; Wang, X.; Chen, L.; Sun, X.; Li, R.; Zhong, W.; Fu, Y.; Yang, L.; Liu, W.; Han, W. Unmanned aerial vehicle based intelligent triage system in mass-casualty incidents using 5G and artificial intelligence. World J. Emerg. Med. 2023, 14, 273. [Google Scholar] [CrossRef]
- Garner, A.; Lee, A.; Harrison, K.; Schultz, C.H. Comparative analysis of multiple-casualty incident triage algorithms. Ann. Emerg. Med. 2001, 38, 541–548. [Google Scholar] [CrossRef]
- Jain, T.; Sibley, A.; Stryhn, H.; Hubloue, I. Comparison of unmanned aerial vehicle technology-assisted triage versus standard practice in triaging casualties by paramedic students in a mass-casualty incident scenario. Prehospital Disaster Med. 2018, 33, 375–380. [Google Scholar] [CrossRef]
- Álvarez-García, C.; Cámara-Anguita, S.; López-Hens, J.M.; Granero-Moya, N.; López-Franco, M.D.; María-Comino-Sanz, I.; Sanz-Martos, S.; Pancorbo-Hidalgo, P.L. Development of the aerial remote triage system using drones in mass casualty scenarios: A survey of international experts. PLoS ONE 2021, 16, e0242947. [Google Scholar] [CrossRef]
- Molinaro, N.; Schena, E.; Silvestri, S.; Bonotti, F.; Aguzzi, D.; Viola, E.; Buccolini, F.; Massaroni, C. Contactless vital signs monitoring from videos recorded with digital cameras: An overview. Front. Physiol. 2022, 13, 160. [Google Scholar] [CrossRef]
- Takano, C.; Ohta, Y. Heart rate measurement based on a time-lapse image. Med. Eng. Phys. 2007, 29, 853–857. [Google Scholar] [CrossRef]
- Verkruysse, W.; Svaasand, L.O.; Nelson, J.S. Remote plethysmographic imaging using ambient light. Opt. Express 2008, 16, 21434–21445. [Google Scholar] [CrossRef]
- Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007, 28, R1. [Google Scholar] [CrossRef]
- Mösch, L.; Barz, I.; Müller, A.; Pereira, C.B.; Moormann, D.; Czaplik, M.; Follmann, A. For Heart Rate Assessments from Drone Footage in Disaster Scenarios. Bioengineering 2023, 10, 336. [Google Scholar] [CrossRef]
- Massaroni, C.; Nicolo, A.; Sacchetti, M.; Schena, E. Contactless methods for measuring respiratory rate: A review. IEEE Sens. J. 2020, 21, 12821–12839. [Google Scholar] [CrossRef]
- Massaroni, C.; Schena, E.; Silvestri, S.; Taffoni, F.; Merone, M. Measurement system based on RBG camera signal for contactless breathing pattern and respiratory rate monitoring. In Proceedings of the 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Rome, Italy, 11–13 June 2018; pp. 1–6. [Google Scholar]
- Janssen, R.; Wang, W.; Moço, A.; De Haan, G. Video-based respiration monitoring with automatic region of interest detection. Physiol. Meas. 2015, 37, 100. [Google Scholar] [CrossRef]
- Wu, H.Y.; Rubinstein, M.; Shih, E.; Guttag, J.; Durand, F.; Freeman, W. Eulerian video magnification for revealing subtle changes in the world. ACM Trans. Graph. 2012, 31, 65. [Google Scholar] [CrossRef]
- Pediaditis, M.; Farmaki, C.; Schiza, S.; Tzanakis, N.; Galanakis, E.; Sakkalis, V. Contactless respiratory rate estimation from video in a real-life clinical environment using eulerian magnification and 3D CNNs. In Proceedings of the 2022 IEEE International Conference on Imaging Systems and Techniques (IST), Virtual, 21–23 June 2022; pp. 1–6. [Google Scholar]
- Brieva, J.; Ponce, H.; Moya-Albor, E. Non-contact breathing rate estimation using machine learning with an optimized architecture. Mathematics 2023, 11, 645. [Google Scholar] [CrossRef]
- Kwon, H.M.; Ikeda, K.; Kim, S.H.; Thiele, R.H. Non-contact thermography-based respiratory rate monitoring in a post-anesthetic care unit. J. Clin. Monit. Comput. 2021, 35, 1291–1297. [Google Scholar] [CrossRef]
- Jing, Y.; Qi, F.; Yang, F.; Cao, Y.; Zhu, M.; Li, Z.; Lei, T.; Xia, J.; Wang, J.; Lu, G. Respiration detection of ground injured human target using UWB radar mounted on a hovering UAV. Drones 2022, 6, 235. [Google Scholar] [CrossRef]
- Al-Naji, A.; Perera, A.G.; Chahl, J. Remote monitoring of cardiorespiratory signals from a hovering unmanned aerial vehicle. Biomed. Eng. Online 2017, 16, 101. [Google Scholar] [CrossRef]
- Saitoh, T.; Takahashi, Y.; Minami, H.; Nakashima, Y.; Aramaki, S.; Mihara, Y.; Iwakura, T.; Odagiri, K.; Maekawa, Y.; Yoshino, A. Real-time breath recognition by movies from a small drone landing on victim’s bodies. Sci. Rep. 2021, 11, 5042. [Google Scholar]
- Al-Naji, A.; Perera, A.G.; Mohammed, S.L.; Chahl, J. Life signs detector using a drone in disaster zones. Remote Sens. 2019, 11, 2441. [Google Scholar] [CrossRef]
- Queirós Pokee, D.; Barbosa Pereira, C.; Mösch, L.; Follmann, A.; Czaplik, M. Consciousness Detection on Injured Simulated Patients Using Manual and Automatic Classification via Visible and Infrared Imaging. Sensors 2021, 21, 8455. [Google Scholar] [CrossRef]
- Barz, I.; Danielmeier, L.; Seitz, S.D.; Moormann, D. Kollisionsfreie Flugbahnen für Kippflügelflugzeuge auf Basis des Wavefront-Algorithmus unter Berücksichtigung Flugmechanischer Beschränkungen; Universitätsbibliothek der RWTH Aachen: Aachen, Germany, 2022. [Google Scholar]
- Kanz, K.G.; Hornburger, P.; Kay, M.; Mutschler, W.; Schäuble, W. mSTaRT-Algorithmus für Sichtung, Behandlung und Transport bei einem Massenanfall von Verletzten. Notf. Rettungsmed. 2006, 3, 264–270. [Google Scholar] [CrossRef]
- Bubser, F.; Callies, A.; Schreiber, J.; Grüneisen, U. PRIOR: Vorsichtungssystem für Rettungsassistenten und Notfallsanitäter. Rettungsdienst 2014, 37, 730–734. [Google Scholar]
- Xu, L.; Guan, Y.; Jin, S.; Liu, W.; Qian, C.; Luo, P.; Ouyang, W.; Wang, X. Vipnas: Efficient video pose estimation via neural architecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 16072–16081. [Google Scholar]
- Martinez, J.; Hossain, R.; Romero, J.; Little, J.J. A simple yet effective baseline for 3d human pose estimation. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2640–2649. [Google Scholar]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Lee, C.W.; McLeod, S.L.; Peddle, M.B. First responder accuracy using SALT after brief initial training. Prehospital Disaster Med. 2015, 30, 447–451. [Google Scholar] [CrossRef]
- Follmann, A.; Ruhl, A.; Gösch, M.; Felzen, M.; Rossaint, R.; Czaplik, M. Augmented reality for guideline presentation in medicine: Randomized crossover simulation trial for technically assisted decision-making. JMIR Mhealth Uhealth 2021, 9, e17472. [Google Scholar] [CrossRef]
- Krichen, M.; Adoni, W.Y.H.; Mihoub, A.; Alzahrani, M.Y.; Nahhal, T. Security challenges for drone communications: Possible threats, attacks and countermeasures. In Proceedings of the 2022 2nd International Conference of Smart Systems and Emerging Technologies (SMARTTECH), Riyadh, Saudi Arabia, 9–11 May 2022; pp. 184–189. [Google Scholar]
- Ko, Y.; Kim, J.; Duguma, D.G.; Astillo, P.V.; You, I.; Pau, G. Drone secure communication protocol for future sensitive applications in military zone. Sensors 2021, 21, 2057. [Google Scholar] [CrossRef]
Phase I | Phase II | |||
---|---|---|---|---|
Subject | Movement | Pose | Movement | Pose |
S04 | Yes | Sitting | No | Sitting |
S05 | Yes | Laying | Yes | Standing |
S06 | No | Sitting | Yes | Sitting |
S07 | Yes | Laying | Yes | Standing |
S08 | No | Sitting | Yes | Standing |
S09 | No | Sitting | Yes | Standing |
S10 | Yes | Laying | Yes | Laying |
S11 | No | Laying | Yes | Laying |
S12 | Yes | Laying | Yes | Sitting |
S13 | No | Laying | Yes | Sitting |
S14 | No | Sitting | Yes | Standing |
S15 | No | Sitting | Yes | Standing |
S16 | No | Laying | Yes | Sitting |
S17 | No | Laying | Yes | Laying |
S18 | No | Laying | Yes | Sitting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mösch, L.; Pokee, D.Q.; Barz, I.; Müller, A.; Follmann, A.; Moormann, D.; Czaplik, M.; Pereira, C.B. Automated Unmanned Aerial System for Camera-Based Semi-Automatic Triage Categorization in Mass Casualty Incidents. Drones 2024, 8, 589. https://doi.org/10.3390/drones8100589
Mösch L, Pokee DQ, Barz I, Müller A, Follmann A, Moormann D, Czaplik M, Pereira CB. Automated Unmanned Aerial System for Camera-Based Semi-Automatic Triage Categorization in Mass Casualty Incidents. Drones. 2024; 8(10):589. https://doi.org/10.3390/drones8100589
Chicago/Turabian StyleMösch, Lucas, Diana Queirós Pokee, Isabelle Barz, Anna Müller, Andreas Follmann, Dieter Moormann, Michael Czaplik, and Carina Barbosa Pereira. 2024. "Automated Unmanned Aerial System for Camera-Based Semi-Automatic Triage Categorization in Mass Casualty Incidents" Drones 8, no. 10: 589. https://doi.org/10.3390/drones8100589
APA StyleMösch, L., Pokee, D. Q., Barz, I., Müller, A., Follmann, A., Moormann, D., Czaplik, M., & Pereira, C. B. (2024). Automated Unmanned Aerial System for Camera-Based Semi-Automatic Triage Categorization in Mass Casualty Incidents. Drones, 8(10), 589. https://doi.org/10.3390/drones8100589