The Dynamic Nature of Wrack: An Investigation into Wrack Movement and Impacts on Coastal Marshes Using sUAS
Abstract
:1. Introduction
- How is wrack distributed spatially throughout a marsh and how does the distribution change over small temporal intervals (i.e., months)?
- What are the pre- and post-hurricane impacts on wrack distribution and how long do these impacts last throughout the marsh system?
- Does the high spatial and temporal resolution of sUAS technology offer insights into the positive and negative impacts of wrack distribution change within a marsh system?
2. Materials and Methods
2.1. Study Area
2.2. sUAS Data Collection
2.3. Processing and Analysis
2.3.1. sUAS Data Processing
2.3.2. Wrack Identification and Digitizing
2.3.3. Data Visualization and Spatial Pattern Identification
3. Results
Wrack Location and Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardin, P.J.; Ryan, R.J. Small-scale unmanned aerial vehicles in environmental remote sensing: Challenges and opportunities. GISci. Remote Sens. 2011, 48, 99–111. [Google Scholar] [CrossRef]
- Hugenholtz, C.H.; Moorman, B.J.; Riddell, K.; Whitehead, K. Small unmanned aircraft systems for Remote Sensing and earth science research. Eos Trans. Am. Geophys. Union 2012, 93, 236. [Google Scholar] [CrossRef]
- Colomina, I.; Pere, M. Unmanned aerial systems for photogrammetry and Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef]
- Terwilliger, B.; Vincenzi, D.; Ison, D. Unmanned aerial systems: Collaborative Innovation to support emergency response. J. Unmanned Veh. Syst. 2015, 3, 31–34. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sam, L.; Martín-Torres, F.J.; Kumar, R. UAVs as remote sensing platform in glaciology: Present applications and future prospects. Remote Sens. Environ. 2016, 175, 196–204. [Google Scholar] [CrossRef]
- Hugenholtz, C.H.; Whitehead, K.; Brown, O.W.; Barchyn, T.E.; Moorman, B.J.; LeClair, A.; Riddel, L.; Hamilton, T. Geomorphological mapping with a small unmanned aircraft system (SUAS): Feature Detection and Accuracy Assessment of a photogrammetrically-derived digital terrain model. Geomorphology 2013, 194, 16–24. [Google Scholar] [CrossRef]
- Klemas, V.V. Coastal and environmental remote sensing from Unmanned Aerial Vehicles: An overview. J. Coast. Res. 2015, 315, 1260–1267. [Google Scholar] [CrossRef]
- Koh, L.P.; Wich, S.A. Dawn of Drone Ecology: Low-cost autonomous aerial vehicles for conservation. Trop. Conserv. Sci. 2012, 5, 121–132. [Google Scholar] [CrossRef]
- Michez, A.; Broset, S.; Lejeune, P. Ears in the sky: Potential of drones for the bioacoustic monitoring of birds and bats. Drones 2021, 5, 9. [Google Scholar] [CrossRef]
- Brunton, E.A.; Leon, J.X.; Burnett, S.E. Evaluating the efficacy and optimal deployment of thermal infrared and true-colour imaging when using drones for Monitoring Kangaroos. Drones 2020, 4, 20. [Google Scholar] [CrossRef]
- Frixione, M.G.; García MD, J.G.; Gauger, M.F. Drone imaging of Elasmobranchs: Whale Sharks and golden cownose rays co-occurrence in a zooplankton hot-spot in southwestern sea of cortez. Food Webs 2020, 24, e00155. [Google Scholar] [CrossRef]
- Landeo-Yauri, S.S.; Ramos, E.A.; Castelblanco-Martínez, D.N.; Niño-Torres, C.A.; Searle, L. Using small drones to photo-identify Antillean manatees: A novel method for monitoring an endangered marine mammal in the Caribbean Sea. Endanger. Species Res. 2020, 41, 79–90. [Google Scholar] [CrossRef]
- Farris, A.S.; Defne, Z.; Ganju, N.K. Identifying salt marsh shorelines from remotely sensed elevation data and imagery. Remote Sens. 2019, 11, 1795. [Google Scholar] [CrossRef]
- Doughty, C.L.; Cavanaugh, K.C. Mapping coastal wetland biomass from high resolution unmanned aerial vehicle (UAV) imagery. Remote Sens. 2019, 11, 540. [Google Scholar] [CrossRef]
- Mehvar, S.; Filatova, T.; Dastgheib, A.; De Ruyter van Steveninck, E.; Ranasinghe, R. Quantifying economic value of Coastal Ecosystem Services: A Review. J. Mar. Sci. Eng. 2018, 6, 5. [Google Scholar] [CrossRef]
- Peterson, G.W.; Turner, R.E. The value of Salt Marsh Edge vs interior as a habitat for fish and decapod crustaceans in a louisiana tidal marsh. Estuaries 1994, 17, 235. [Google Scholar] [CrossRef]
- Loomis, M.J.; Craft, C.B. Carbon sequestration and nutrient (nitrogen, phosphorus) accumulation in river-dominated tidal marshes, Georgia, USA. Soil Sci. Soc. Am. J. 2010, 74, 1028–1036. [Google Scholar] [CrossRef]
- Ballard, J.; Pezda, J.; Spencer, D.; Plantinga, A. An Economic Valuation of Southern California Coastal Wetlands. Master’s Thesis, University of California, Santa Barbara, CA, USA, 2016. [Google Scholar]
- Narayan, S.; Beck, M.W.; Wilson, P.; Thomas, C.J.; Guerrero, A.; Shepard, C.C.; Reguero, B.G.; Franco, G.; Carter Ingram, J.; Trespalacios, D. The value of coastal wetlands for flood damage reduction in the Northeastern USA. Sci. Rep. 2017, 7, 9463. [Google Scholar] [CrossRef] [PubMed]
- Morganello, K.; Rose, L.L. Life Along the Salt Marsh: Protecting Tidal Creeks with Vegetative Buffers. 2013. Available online: https://hgic.clemson.edu/factsheet/life-along-the-salt-marsh-protecting-tidal-creeks-with-vegetative-buffers/ (accessed on 2 February 2021).
- Willis, D.B.; Straka, T.J. The economic contribution of natural resources to South Carolina’s economy. Bull. FW 13 2016, 13, 1–24. [Google Scholar]
- Pennings, S.C.; Richards, C.L. Effects of wrack burial in salt-stressed habitats: Batis maritima in a southwest Atlantic Salt Marsh. Ecography 1998, 21, 630–638. [Google Scholar] [CrossRef]
- Valiela, I.; Rietsma, C.S. Disturbance of salt marsh vegetation by wrack mats in Great Sippewissett Marsh. Oecologia 1995, 102, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Reidenbaugh, T.G.; Banta, W.C. Origins and effects of Spartina Wrack in a virginia salt marsh. Gulf Res. Rep. 1980, 6, 393–401. [Google Scholar] [CrossRef]
- Stalter, R.; Jung, A.; Starosta, A.; Baden, J.; Byer, M.D. Effect of wrack accumulation on salt marsh vegetation, Baruch Institute, Georgetown County, South Carolina. WIT Trans. Ecol. Environ. 2006, 88, 305–313. [Google Scholar] [CrossRef]
- Viehman, S.; Vander Pluym, J.L.; Schellinger, J. Characterization of marine debris in North Carolina Salt Marshes. Mar. Pollut. Bull. 2011, 62, 2771–2779. [Google Scholar] [CrossRef] [PubMed]
- Tolley, P.M.; Christian, R.R. Effects of increased inundation and wrack deposition on a high salt marsh plant community. Estuaries 1999, 22, 944. [Google Scholar] [CrossRef]
- Minchinton, T.E. Disturbance by wrack facilitates spread of Phragmites australis in a Coastal Marsh. J. Exp. Mar. Biol. Ecol. 2002, 281, 89–107. [Google Scholar] [CrossRef]
- SCDNR—Aquatic Nuisance Species Program Phragmites. Phragmites in South Carolina. 2010. Available online: https://www.dnr.sc.gov/water/envaff/aquatic/phragmites.html (accessed on 19 August 2022).
- Doyle, T. Effect of Hurricane Wrack Deposition on Coastal Marsh Surface Elevation Change; U.S. Geological Survey: Reston, VA, USA, 2016.
- Platt, W.J.; Joseph, D.; Ellair, D.P. Hurricane Wrack generates landscape-level heterogeneity in coastal Pine Savanna. Ecography 2014, 38, 63–73. [Google Scholar] [CrossRef]
- Santos Santana, L.; Araújo E Silva Ferraz, G.; Bedin Marin, D.; Dienevam Souza Barbosa, B.; Mendes Dos Santos, L.; Ferreira Ponciano Ferraz, P.; Conti, L.; Camiciottoli, C.; Rossi, G. Influence of flight altitude and control points in the georeferencing of images obtained by Unmanned Aerial Vehicle. Eur. J. Remote Sens. 2021, 54, 59–71. [Google Scholar] [CrossRef]
- Pix4D. Improved Accuracy for Rolling Shutter Cameras. Pix4D. 2016. Available online: https://www.pix4d.com/blog/rolling-shutter-correction/ (accessed on 3 September 2022).
- Topodrone. Correction of the Rolling Shutter Distortion and Processing Survey Data from Topodrone DJI Mavic 2 pro L1/L2 RTK/PPK. 2020. Available online: https://topodrone.com/blog/917/ (accessed on 3 September 2022).
- Jensen, J.R. Drone Aerial Photography and Videography: Data Collection and Image Interpretation (Kindle ed.); Amazon Digital Services LLC: Seattle, WA, USA, 2018. [Google Scholar]
- Román-Rivera, M.A.; Ellis, J.T. The king tide conundrum. J. Coast. Res. 2018, 34, 769–771. [Google Scholar] [CrossRef]
- SC Climate Office. 2020 South Carolina Year in Review. 2021. Available online: https://www.dnr.sc.gov/climate/sco/ClimateData/yearly/cli_sc2020review.pdf (accessed on 2 September 2022).
- Fischer, J.M.; Reed-Andersen, T.; Klug, J.L.; Chalmers, A.G. Spatial pattern of localized disturbance along a southeastern salt marsh tidal creek. Estuaries 2000, 23, 565. [Google Scholar] [CrossRef]
- Alexander, C. Wrack Assessment Using Aerial Photography in Coastal Georgia. Final Report to the Georgia Coastal Zone Management Program, Department of Natural Resources, Coastal Resources Division, Brunswick, GA. 2008. Available online: http://tomscreek.info/Wrack%20Assessment%20Using%20Aerial%20Photography%202008.pdf (accessed on 3 September 2022).
- Peng, D.; Montelongo, D.C.; Wu, L.; Armitage, A.R.; Kominoski, J.S.; Pennings, S.C. A hurricane alters the relationship between mangrove cover and marine subsidies. Ecology 2022, 103, e3662. [Google Scholar] [CrossRef] [PubMed]
- Negrin, V.L.; Trilla, G.G.; Kandus, P.; Marcovecchio, J.E. Decomposition and nutrient dynamics in a Spartina alterniflora marsh of the Bahia Blanca Estuary, Argentina. Braz. J. Oceanogr. 2012, 60, 259–263. [Google Scholar] [CrossRef]
- Bertness, M.D.; Ellison, A.M. Determinants of pattern in a new england salt marsh plant community. Ecol. Monogr. 1987, 57, 129–147. [Google Scholar] [CrossRef]
- Higinbotham, C.B.; Alber, M.; Chalmers, A.G. Analysis of tidal marsh vegetation patterns in two Georgia estuaries using aerial photography and GIS. Estuaries 2004, 27, 670–683. [Google Scholar] [CrossRef]
- Montemayor, D.I.; Canepuccia, A.D.; Farina, J.; Addino, M.; Valiñas, M.; Iribarne, O.O. Effects of Spartina wrack on surface-active arthropod assemblage under different environmental contexts in southwest Atlantic Salt Marshes. Estuaries Coasts 2019, 42, 1104–1126. [Google Scholar] [CrossRef]
- Taylor, P.H. Do Salt Marshes Serve as Fish Nurseries? Gulf of Maine Times. 2005. Available online: http://www.gulfofmaine.org/times/summer2005/scienceinsights.html (accessed on 19 August 2022).
- Wang, C. At-sensor radiometric correction of a multispectral camera (rededge) for SUAS vegetation mapping. Sensors 2021, 21, 8224. [Google Scholar] [CrossRef]
- Johnson, B.J.; Manby, R.; Devine, G.J. Performance of an aerially applied liquid bacillus thuringiensis var. Israelensis formulation (strainAM65-52) against mosquitoes in mixed saltmarsh–mangrove systems and fine-scale mapping of Mangrove Canopy cover using affordable drone-based imagery. Pest Manag. Sci. 2020, 76, 3822–3831. [Google Scholar] [CrossRef]
- Zhou, Z.; Yang, Y.; Chen, B. Estimating Spartina alterniflora fractional vegetation cover and aboveground biomass in a coastal wetland using Spot6 satellite and UAV Data. Aquat. Bot. 2018, 144, 38–45. [Google Scholar] [CrossRef]
- Morgan, G.R.; Wang, C.; Morris, J.T. RGB indices and canopy height modelling for mapping tidal marsh biomass from a small unmanned aerial system. Remote Sens. 2021, 13, 3406. [Google Scholar] [CrossRef]
- Dale, J.; Burnside, N.G.; Hill-Butler, C.; Berg, M.J.; Strong, C.J.; Burgess, H.M. The use of unmanned aerial vehicles to determine differences in vegetation cover: A tool for Monitoring Coastal Wetland Restoration Schemes. Remote Sens. 2020, 12, 4022. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Doraiswamy, P.C.; McMurtrey, J.E.; Daughtry, C.S.; Perry, E.M.; Akhmedov, B. A visible band index for Remote Sensing Leaf chlorophyll content at the canopy scale. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 103–112. [Google Scholar] [CrossRef]
- Taddia, Y.; Pellegrinelli, A.; Corbau, C.; Franchi, G.; Staver, L.W.; Stevenson, J.C.; Nardin, W. High-resolution monitoring of tidal systems using UAV: A case study on poplar island, MD (USA). Remote Sens. 2021, 13, 1364. [Google Scholar] [CrossRef]
- Dai, W.; Li, H.; Chen, X.; Xu, F.; Zhou, Z.; Zhang, C. Saltmarsh expansion in response to morphodynamic evolution: Field observations in the Jiangsu Coast using UAV. J. Coast. Res. 2020, 95, 433. [Google Scholar] [CrossRef]
Date | Flight Time (EST/EDT) | Cloud Cover | Low Tide | Note |
---|---|---|---|---|
1 August 2020 | 1:57 PM–2:44 PM | Some clouds | 1:13 PM | Pre-Hurricane Isaias Impact investigation |
4 August 2020 | 3:50 PM–4:40 PM | Some clouds | 3:39 PM | Post- Hurricane Isaias Impact |
15 August 2020 | 11:21 AM–12:11 PM | Some clouds | 11:49 PM | Post-Isaias 2 Week Check |
15 September 2020 | 12:31 PM–1:24 PM | Many clouds | 1:14 PM | Beginning of monthly operations |
29 October 2020 | 1:51 PM–2:38 PM | Many clouds | 1:47 PM | Data captured in between storms |
11 December 2020 | 12:05 PM–1:04 PM | No clouds | 11:17 AM | Clear sky/winds 3 mph from ENE |
11 January 2021 | 12:11 PM–12:59 PM | Completely cloudy | 12:56 PM | Captured between rain showers |
9 February 2021 | 1:22 PM–2:08 PM | Completely cloudy | 12:41 PM | Captured day after rain showers |
25 March 2021 | 12:06 PM–12:58 PM | Many clouds | 12:36 PM | No shadows due to clouds |
22 April 2021 | 11:31 AM–12:21 PM | No clouds | 11:04 AM | Clear sky/winds 14 mph from NE |
22 May 2021 | 10:47 AM–11:35 AM | Many clouds | 11:24 AM | No shadows due to clouds |
21 June 2021 | 11:56 AM–12:47 PM | Some clouds | 11:48 AM | Clear sky/winds 9 mph from W |
Date | Total Wrack | Avg Size m2 | Wrack within 10 m of Water | Avg Size m2 | Wrack within 15 m of Water | Avg Size m2 | Wrack within 20 m of Water | Avg Size m2 |
---|---|---|---|---|---|---|---|---|
1 August 2020 | 324 | 15.00 | 199 | 14.82 | 223 | 14.00 | 244 | 13.54 |
4 August 2020 | 367 | 15.72 | 190 | 16.02 | 221 | 14.89 | 246 | 14.37 |
15 August 2020 | 290 | 12.41 | 128 | 14.25 | 164 | 12.84 | 184 | 12.02 |
September 2020 | 148 | 13.67 | 66 | 12.93 | 83 | 12.16 | 91 | 12.37 |
October 2020 | 122 | 12.91 | 76 | 14.86 | 87 | 15.35 | 99 | 14.01 |
December 2020 | 93 | 17.17 | 54 | 17.91 | 69 | 19.29 | 74 | 18.16 |
January 2021 | 150 | 15.97 | 83 | 17.54 | 98 | 15.24 | 109 | 19.65 |
February 2021 | 146 | 11.12 | 92 | 10.26 | 107 | 9.55 | 118 | 13.14 |
March 2021 | 103 | 10.33 | 72 | 8.96 | 79 | 9.68 | 85 | 9.79 |
April 2021 | 166 | 12.33 | 85 | 11.28 | 98 | 11.95 | 119 | 14.53 |
May 2021 | 185 | 14.40 | 97 | 12.35 | 113 | 13.05 | 131 | 15.57 |
June 2021 | 202 | 11.89 | 116 | 10.22 | 132 | 9.69 | 145 | 12.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morgan, G.R.; Morgan, D.R.; Wang, C.; Hodgson, M.E.; Schill, S.R. The Dynamic Nature of Wrack: An Investigation into Wrack Movement and Impacts on Coastal Marshes Using sUAS. Drones 2023, 7, 535. https://doi.org/10.3390/drones7080535
Morgan GR, Morgan DR, Wang C, Hodgson ME, Schill SR. The Dynamic Nature of Wrack: An Investigation into Wrack Movement and Impacts on Coastal Marshes Using sUAS. Drones. 2023; 7(8):535. https://doi.org/10.3390/drones7080535
Chicago/Turabian StyleMorgan, Grayson R., Daniel R. Morgan, Cuizhen Wang, Michael E. Hodgson, and Steven R. Schill. 2023. "The Dynamic Nature of Wrack: An Investigation into Wrack Movement and Impacts on Coastal Marshes Using sUAS" Drones 7, no. 8: 535. https://doi.org/10.3390/drones7080535
APA StyleMorgan, G. R., Morgan, D. R., Wang, C., Hodgson, M. E., & Schill, S. R. (2023). The Dynamic Nature of Wrack: An Investigation into Wrack Movement and Impacts on Coastal Marshes Using sUAS. Drones, 7(8), 535. https://doi.org/10.3390/drones7080535