Recognition of Rubber Tree Powdery Mildew Based on UAV Remote Sensing with Different Spatial Resolutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Processing
2.2.1. UAV Multispectral Image Acquisition
2.2.2. Ground Truth Data Collection
2.2.3. Data Preprocessing
2.3. Feature Extraction of Multispectral Images
2.3.1. Extraction of Vegetation Index (VI) and Texture Features (TF)
2.3.2. Feature Selection
2.4. Identification Model of Rubber Tree Powdery Mildew
2.5. Accuracy Assessment
3. Results
3.1. Correlation Analysis of Spectral Features and Texture Features
3.2. Feature Selection at Different Resolutions
3.2.1. Feature Selection Based on the SPA
3.2.2. Feature Selection Based on the ReliefF Algorithm
3.2.3. Feature Selection Based on the Boruta–SHAP Algorithm
3.3. Construction of Rubber Tree Powdery Mildew Identification Model
3.4. Rubber Tree Powdery Mildew Mapping
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Type | KNN | SVM | RF |
---|---|---|---|
All feature | |||
3.4 cm | leaf_size = 10, n_neighbors = 9, P = 1, weights = ‘uniform’ | C = 147, gamma = 1/62, kernel = ‘rbf’ | max_depth = 10, n_estimators = 400 |
7 cm | leaf_size = 10, n_neighbors = 13, P = 1, weights = ‘distance’ | C = 186, gamma = 1/62, kernel = ‘rbf’ | max_depth = 10, n_estimators = 400 |
14 cm | leaf_size = 10, n_neighbors = 7, P = 1, weights = ‘distance’ | C = 182, gamma = 1/62, kernel = ‘rbf’ | max_depth = 10, n_estimators = 400 |
30 cm | leaf_size = 10, n_neighbors = 15, P = 1, weights = ‘distance’ | C = 187, gamma = 1/62, kernel = ‘rbf’ | max_depth = 14, n_estimators = 1000 |
SPA | |||
3.4 cm | leaf_size = 10, n_neighbors = 5, P = 1, weights = ‘distance’ | C = 177, gamma = 1/14, kernel = ‘rbf’ | max_depth = 14, n_estimators = 600 |
7 cm | leaf_size = 10, n_neighbors = 13, P = 1, weights = ‘distance’ | C = 188, gamma = 1/17, kernel = ‘rbf’ | max_depth = 8, n_estimators = 1000 |
14 cm | leaf_size = 10, n_neighbors = 7, P = 1, weights = ‘distance’ | C = 197, gamma = 1/9, kernel = ‘rbf’ | max_depth = 6, n_estimators = 600 |
30 cm | leaf_size = 10, n_neighbors = 11, P = 1, weights = ‘distance’ | C = 131, gamma = 1/8, kernel = ‘rbf’ | max_depth = 14, n_estimators= 1000 |
ReliefF | |||
3.4 cm | leaf_size = 10, n_neighbors = 5, P = 1, weights = ‘distance’ | C = 185, gamma = 1/23, kernel = ‘rbf’ | max_depth = 8, n_estimators = 400 |
7 cm | leaf_size = 10, n_neighbors = 5, P = 1, weights = ‘uniform’ | C = 179, gamma = 1/18, kernel = ‘rbf’ | max_depth = 14, n_estimators = 400 |
14 cm | leaf_size = 10, n_neighbors = 5, P = 1, weights = ‘uniform’ | C = 194, gamma = 1/14, kernel = ‘rbf’ | max_depth = 8, n_estimators = 600 |
30 cm | leaf_size = 10, n_neighbors = 5, P = 1, weights = ‘distance’ | C = 112, gamma = 1/8, kernel = ‘rbf’ | max_depth = 10, n_estimators = 400 |
Boruta–SHAP | |||
3.4 cm | leaf_size = 10, n_neighbors = 5, P = 1, weights = ‘uniform’ | C = 105, gamma = 1/44, kernel = ‘rbf’ | max_depth = 12, n_estimators = 1000 |
7 cm | leaf_size = 10, n_neighbors = 11, P = 1, weights = ‘distance’ | C = 127, gamma = 1/43, kernel = ‘rbf’ | max_depth = 12, n_estimators = 400 |
14 cm | leaf_size = 10, n_neighbors = 9, P = 1, weights = ‘uniform’ | C = 162, gamma = 1/40, kernel = ‘rbf’ | max_depth = 12, n_estimators = 800 |
30 cm | leaf_size = 10, n_neighbors = 11, P = 2, weights = ‘distance’ | C = 199, gamma = 1/28, kernel = ‘rbf’ | max_depth = 8, n_estimators = 400 |
References
- Singh, A.K.; Liu, W.; Zakari, S.; Wu, J.; Yang, B.; Jiang, X.J.; Zhu, X.; Zou, X.; Zhang, W.; Chen, C.; et al. A Global Review of Rubber Plantations: Impacts on Ecosystem Functions, Mitigations, Future Directions, and Policies for Sustainable Cultivation. Sci. Total Environ. 2021, 796, 148948. [Google Scholar] [CrossRef]
- Bai, R.; Wang, J.; Li, N. Climate Change Increases the Suitable Area and Suitability Degree of Rubber Tree Powdery Mildew in China. Ind. Crops Prod. 2022, 189, 115888. [Google Scholar] [CrossRef]
- Liyanage, K.K.; Khan, S.; Mortimer, P.E.; Hyde, K.D.; Xu, J.; Brooks, S.; Ming, Z. Powdery Mildew Disease of Rubber Tree. For. Pathol. 2016, 46, 90–103. [Google Scholar] [CrossRef]
- Qin, B.; Zheng, F.; Zhang, Y. Molecular Cloning and Characterization of a Mlo Gene in Rubber Tree (Hevea brasiliensis). J. Plant Physiol. 2015, 175, 78–85. [Google Scholar] [CrossRef]
- Cao, X.; Xu, X.; Che, H.; West, J.S.; Luo, D. Effects of Temperature and Leaf Age on Conidial Germination and Disease Development of Powdery Mildew on Rubber Tree. Plant Pathol. 2021, 70, 484–491. [Google Scholar] [CrossRef]
- Zhai, D.-L.; Thaler, P.; Luo, Y.; Xu, J. The Powdery Mildew Disease of Rubber (Oidium heveae) Is Jointly Controlled by the Winter Temperature and Host Phenology. Int. J. Biometeorol. 2021, 65, 1707–1718. [Google Scholar] [CrossRef]
- Li, X.; Bi, Z.; Di, R.; Liang, P.; He, Q.; Liu, W.; Miao, W.; Zheng, F. Identification of Powdery Mildew Responsive Genes in Hevea Brasiliensis through MRNA Differential Display. Int. J. Mol. Sci. 2016, 17, 181. [Google Scholar] [CrossRef]
- Azizan, F.A.; Kiloes, A.M.; Astuti, I.S.; Abdul Aziz, A. Application of Optical Remote Sensing in Rubber Plantations: A Systematic Review. Remote Sens. 2021, 13, 429. [Google Scholar] [CrossRef]
- Santoso, H.; Gunawan, T.; Jatmiko, R.H.; Darmosarkoro, W.; Minasny, B. Mapping and Identifying Basal Stem Rot Disease in Oil Palms in North Sumatra with QuickBird Imagery. Precis. Agric. 2011, 12, 233–248. [Google Scholar] [CrossRef]
- Zhang, B.; Ye, H.; Lu, W.; Huang, W.; Wu, B.; Hao, Z.; Sun, H. A Spatiotemporal Change Detection Method for Monitoring Pine Wilt Disease in a Complex Landscape Using High-Resolution Remote Sensing Imagery. Remote Sens. 2021, 13, 2083. [Google Scholar] [CrossRef]
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision Agriculture Techniques and Practices: From Considerations to Applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef]
- Pádua, L.; Marques, P.; Martins, L.; Sousa, A.; Peres, E.; Sousa, J.J. Monitoring of Chestnut Trees Using Machine Learning Techniques Applied to UAV-Based Multispectral Data. Remote Sens. 2020, 12, 3032. [Google Scholar] [CrossRef]
- Yang, W.; Xu, W.; Wu, C.; Zhu, B.; Chen, P.; Zhang, L.; Lan, Y. Cotton Hail Disaster Classification Based on Drone Multispectral Images at the Flowering and Boll Stage. Comput. Electron. Agric. 2021, 180, 105866. [Google Scholar] [CrossRef]
- Guo, A.; Huang, W.; Dong, Y.; Ye, H.; Ma, H.; Liu, B.; Wu, W.; Ren, Y.; Ruan, C.; Geng, Y. Wheat Yellow Rust Detection Using UAV-Based Hyperspectral Technology. Remote Sens. 2021, 13, 123. [Google Scholar] [CrossRef]
- Ye, H.; Huang, W.; Huang, S.; Cui, B.; Dong, Y.; Guo, A.; Ren, Y.; Jin, Y. Recognition of Banana Fusarium Wilt Based on UAV Remote Sensing. Remote Sens. 2020, 12, 938. [Google Scholar] [CrossRef]
- Wei, Y.; Yang, T.; Ding, X.; Gao, Y.; Yuan, X.; He, L.; Wang, Y.; Duan, J.; Feng, W. Wheat lodging region identification based on unmanned aerial vehicle multispectral imagery with different spatial resolutions. Smart Agric. 2023, 5, 56–67. [Google Scholar]
- Zhao, J.; Jin, Y.; Ye, H.; Huang, W.; Dong, Y.; Fan, L.; Ma, H.; Jiang, J. Remote Sensing Monitoring of Areca Yellow Leaf Disease Based on UAV Multi-Spectral Images. Trans. Chin. Soc. Agric. Eng. 2020, 36, 54–61. [Google Scholar]
- Ma, L.; Huang, X.; Hai, Q.; Gang, B.; Tong, S.; Bao, Y.; Dashzebeg, G.; Nanzad, T.; Dorjsuren, A.; Enkhnasan, D. Model-Based Identification of Larix Sibirica Ledeb. Damage Caused by Erannis Jacobsoni Djak. Based on UAV Multispectral Features and Machine Learning. Forests 2022, 13, 2104. [Google Scholar] [CrossRef]
- Narmilan, A.; Gonzalez, F.; Salgadoe, A.S.A.; Powell, K. Detection of White Leaf Disease in Sugarcane Using Machine Learning Techniques over UAV Multispectral Images. Drones 2022, 6, 230. [Google Scholar] [CrossRef]
- Rodriguez, J.; Lizarazo, I.; Prieto, F.; Angulo-Morales, V. Assessment of Potato Late Blight from UAV-Based Multispectral Imagery. Comput. Electron. Agric. 2021, 184, 106061. [Google Scholar] [CrossRef]
- Mei, S.; Hou, S.; Cui, H.; Feng, F.; Rong, W. Characterization of the Interaction between Oidium Heveae and Arabidopsis Thaliana. Mol. Plant Pathol. 2016, 17, 1331–1343. [Google Scholar] [CrossRef]
- Di Gennaro, S.F.; Toscano, P.; Gatti, M.; Poni, S.; Berton, A.; Matese, A. Spectral Comparison of UAV-Based Hyper and Multispectral Cameras for Precision Viticulture. Remote Sens. 2022, 14, 449. [Google Scholar] [CrossRef]
- Borra-Serrano, I.; Peña, J.M.; Torres-Sánchez, J.; Mesas-Carrascosa, F.J.; López-Granados, F. Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping. Sensors 2015, 15, 19688–19708. [Google Scholar] [CrossRef]
- Garcia-Ruiz, F.; Sankaran, S.; Maja, J.M.; Lee, W.S.; Rasmussen, J.; Ehsani, R. Comparison of Two Aerial Imaging Platforms for Identification of Huanglongbing-Infected Citrus Trees. Comput. Electron. Agric. 2013, 91, 106–115. [Google Scholar] [CrossRef]
- Wang, L.-F.; Wang, M.; Zhang, Y. Effects of Powdery Mildew Infection on Chloroplast and Mitochondrial Functions in Rubber Tree. Trop. Plant Pathol. 2014, 39, 242–250. [Google Scholar] [CrossRef]
- Liang, Y.; Kou, W.; Lai, H.; Wang, J.; Wang, Q.; Xu, W.; Wang, H.; Lu, N. Improved Estimation of Aboveground Biomass in Rubber Plantations by Fusing Spectral and Textural Information from UAV-Based RGB Imagery. Ecol. Indic. 2022, 142, 109286. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel Algorithms for Remote Estimation of Vegetation Fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef]
- Zhou, J.; Yungbluth, D.; Vong, C.N.; Scaboo, A.; Zhou, J. Estimation of the Maturity Date of Soybean Breeding Lines Using UAV-Based Multispectral Imagery. Remote Sens. 2019, 11, 2075. [Google Scholar] [CrossRef]
- Patrick, A.; Pelham, S.; Culbreath, A.; Holbrook, C.C.; De Godoy, I.J.; Li, C. High Throughput Phenotyping of Tomato Spot Wilt Disease in Peanuts Using Unmanned Aerial Systems and Multispectral Imaging. IEEE Instrum. Meas. Mag. 2017, 20, 4–12. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Berjón, A.; Lopez-Lozano, R.; Miller, J.R.; Martín, P.; Cachorro, V.; González, M.R.; De Frutos, A. Assessing Vineyard Condition with Hyperspectral Indices: Leaf and Canopy Reflectance Simulation in a Row-Structured Discontinuous Canopy. Remote Sens. Environ. 2005, 99, 271–287. [Google Scholar] [CrossRef]
- Chandel, A.K.; Khot, L.R.; Sallato, B. Apple Powdery Mildew Infestation Detection and Mapping Using High-Resolution Visible and Multispectral Aerial Imaging Technique. Sci. Hortic. 2021, 287, 110228. [Google Scholar] [CrossRef]
- Rouse, J.W. Monitoring the Vernal Advancement of Retrogradation of Natural Vegetation; Type III, Final Report; NASA/GSFC: Greenbelt, MD, USA, 1974; Volume 371.
- Filella, I.; Serrano, L.; Serra, J.; Penuelas, J. Evaluating Wheat Nitrogen Status with Canopy Reflectance Indices and Discriminant Analysis. Crop Sci. 1995, 35, 1400–1405. [Google Scholar] [CrossRef]
- Wang, Z.J.; Wang, J.H.; Liu, L.Y.; Huang, W.J.; Zhao, C.J.; Wang, C.Z. Prediction of Grain Protein Content in Winter Wheat (Triticum Aestivum L.) Using Plant Pigment Ratio (PPR). Field Crops Res. 2004, 90, 311–321. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y.U. Non-destructive Optical Detection of Pigment Changes during Leaf Senescence and Fruit Ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef]
- Wang, F.-M.; Huang, J.-F.; Tang, Y.-L.; Wang, X.-Z. New Vegetation Index and Its Application in Estimating Leaf Area Index of Rice. Rice Sci. 2007, 14, 195–203. [Google Scholar] [CrossRef]
- Zheng, H.; Cheng, T.; Zhou, M.; Li, D.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Improved Estimation of Rice Aboveground Biomass Combining Textural and Spectral Analysis of UAV Imagery. Precis. Agric. 2019, 20, 611–629. [Google Scholar] [CrossRef]
- Xue, L.; Cao, W.; Luo, W.; Dai, T.; Zhu, Y. Monitoring Leaf Nitrogen Status in Rice with Canopy Spectral Reflectance. Agron. J. 2004, 96, 135–142. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated Narrow-Band Vegetation Indices for Prediction of Crop Chlorophyll Content for Application to Precision Agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color Indices for Weed Identification under Various Soil, Residue, and Lighting Conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- YIN, Y.; WANG, G. Hyperspectral Characteristic Wavelength Selection Method for Moldy Maize Based on Continuous Projection Algorithm Fusion Information Entropy. J. Nucl. Agric. Sci. 2020, 34, 356–362. [Google Scholar]
- Wang, Z.; Zhang, Y.; Chen, Z.; Yang, H.; Sun, Y.; Kang, J.; Yang, Y.; Liang, X. Application of ReliefF Algorithm to Selecting Feature Sets for Classification of High Resolution Remote Sensing Image. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 755–758. [Google Scholar]
- Akbar, S.; Ali, F.; Hayat, M.; Ahmad, A.; Khan, S.; Gul, S. Prediction of Antiviral Peptides Using Transform Evolutionary & SHAP Analysis Based Descriptors by Incorporation with Ensemble Learning Strategy. Chemom. Intell. Lab. Syst. 2022, 230, 104682. [Google Scholar]
- Islam, N.; Rashid, M.M.; Wibowo, S.; Xu, C.-Y.; Morshed, A.; Wasimi, S.A.; Moore, S.; Rahman, S.M. Early Weed Detection Using Image Processing and Machine Learning Techniques in an Australian Chilli Farm. Agriculture 2021, 11, 387. [Google Scholar] [CrossRef]
- Oide, A.H.; Nagasaka, Y.; Tanaka, K. Performance of Machine Learning Algorithms for Detecting Pine Wilt Disease Infection Using Visible Color Imagery by UAV Remote Sensing. Remote Sens. Appl. Soc. Environ. 2022, 28, 100869. [Google Scholar] [CrossRef]
- Ong, P.; Teo, K.S.; Sia, C.K. UAV-Based Weed Detection in Chinese Cabbage Using Deep Learning. Smart Agric. Technol. 2023, 4, 100181. [Google Scholar] [CrossRef]
- Xu, P.; Fu, L.; Xu, K.; Sun, W.; Tan, Q.; Zhang, Y.; Zha, X.; Yang, R. Investigation into Maize Seed Disease Identification Based on Deep Learning and Multi-Source Spectral Information Fusion Techniques. J. Food Compos. Anal. 2023, 119, 105254. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, L.; Huang, W.; Dong, Y.; Weng, S.; Zhao, J.; Ma, H.; Liu, L. Detection of Wheat Fusarium Head Blight Using UAV-Based Spectral and Image Feature Fusion. Front. Plant Sci. 2022, 13, 1004427. [Google Scholar] [CrossRef]
- DadrasJavan, F.; Samadzadegan, F.; Seyed Pourazar, S.H.; Fazeli, H. UAV-Based Multispectral Imagery for Fast Citrus Greening Detection. J. Plant Dis. Prot. 2019, 126, 307–318. [Google Scholar] [CrossRef]
- Venkatesh, B.; Anuradha, J. A Review of Feature Selection and Its Methods. Cybern. Inf. Technol. 2019, 19, 3–26. [Google Scholar] [CrossRef]
- Torresan, C.; Berton, A.; Carotenuto, F.; Di Gennaro, S.F.; Gioli, B.; Matese, A.; Miglietta, F.; Vagnoli, C.; Zaldei, A.; Wallace, L. Forestry Applications of UAVs in Europe: A Review. Int. J. Remote Sens. 2017, 38, 2427–2447. [Google Scholar] [CrossRef]
Characteristic Name | P4 Multispectral |
---|---|
Weight | 1487 g |
Sensor | Six 1/2.9″ CMOS, including one RGB sensor and five monochrome sensors |
Lenses | FOV (Field of View): 62.7°; Focal Length: 5.74 mm; Aperture: f/2.2 |
Spectral wavelengths | Blue (450 nm ± 16 nm); Green (560 nm ± 16 nm); Red (650 nm ± 16 nm); Red edge (730 nm ± 16 nm); NIR (840 nm ± 26 nm) |
Max Image Size | 1600 × 1300 (4:3.25) |
RTK GNSS | GPS; GLONASS; BeiDou; Galileo |
Positioning Accuracy | Vertical 1.5 cm + 1 ppm (RMS); Horizontal 1 cm + 1 ppm (RMS) |
Abbreviation | Vegetation Index | Formula | Reference |
---|---|---|---|
ARI | Anth Reflectance Index | (1/g) − (1/r) | [27] |
CCCI | Canopy Chlorophyll Contents Index | ((nir − re)/(nir + re))/((nir − r)/(nir + r)) | [28] |
CLSI | Cercospora Leaf Spot Index | (re − g)/(re + g) − re | [28] |
DVIRE | Difference Vegetation Index—RedEdge | nir − re | [29] |
GDVI | Green Difference Vegetation Index | nir − g | [28] |
GI | Greenness Index | g/r | [30] |
GNDVI | Green Normalized Difference Vegetation Index | (nir − g)/(nir + g) | [29] |
GVI | Green Vegetation Index | (g − re)/(g + re) | [29] |
MSR | Modified Simple Ratio | (− 1)/() | [31] |
NDVI | Normalized Difference Vegetation Index | (nir − r)/(nir + r) | [32] |
NormRRE | Normalized Red–RE | re/(nir + re + g) | [29] |
NPCI | Normalized Pigment Chlorophyll Index | (re − b)/(re + b) | [29] |
NRI | Nitrogen Reflectance Index | (g − r)/(g + r) | [33] |
OSAVI | Optimal Soil-Adjusted Vegetation Index | (nir − r)/(nir + r + 0.16) | [30] |
PPR | Plant Pigment Ratio | (g − b)/(g + b) | [34] |
PSRI | Plant Senescence Reflectance Index | (r − g)/nir | [35] |
RBNDVI | Red-Blue Normalized Difference Vegetation Index | (nir − (r + b))/(nir + (r + b)) | [36] |
RGR | Red–Green Ratio | r/g | [37] |
RRI | RedEdge–Red Ratio Index | re/r | [37] |
RVI | Ratio Vegetation Index | nir/r | [38] |
TCARI | Transformed Chlorophyll Absorption Reflectance Index | 3 × ((nir − r) − 0.2 × (nir − g) × (nir/r)) | [39] |
WI | Woebbecke Index | (g − b)/(re − b) | [40] |
Spectral Features | Correlation Coefficients | Spectral Features | Correlation Coefficients |
---|---|---|---|
ARI | 0.104 * | NPCI | 0.195 ** |
CCCI | −0.308 ** | NRI | −0.135 ** |
CLSI | 0.104 * | OSAVI | −0.617 ** |
DVIRE | −0.697 ** | PPR | 0.463 ** |
GDVI | −0.686 ** | PSRI | −0.287 ** |
GI | −0.144 ** | RBNDVI | −0.346 ** |
GNDVI | −0.523 ** | RGR | 0.126 ** |
GVI | 0.554 ** | RRI | −0.500 ** |
MSR | 0.055 | RVI | −0.545 ** |
NDVI | −0.506 ** | TCARI | 0.635 ** |
NormRRE | 0.285 ** | WI | 0.539 ** |
Texture Features | Correlation Coefficients | ||||
---|---|---|---|---|---|
Blue | Green | Red | RE | NIR | |
Mea | −0.773 ** | −0.065 | 0.059 | −0.515 ** | −0.637 ** |
Var | −0.363 ** | 0.424 ** | 0.204 ** | 0.351 ** | 0.091 * |
Hom | 0.400 ** | −0.434 ** | −0.253 ** | −0.442 ** | −0.251 ** |
Con | −0.329 ** | 0.410 ** | 0.206 ** | 0.355 ** | 0.142 ** |
Dis | −0.381 ** | 0.442 ** | 0.241 ** | 0.422 ** | 0.201 ** |
Ent | −0.445 ** | 0.395 ** | 0.253 ** | 0.393 ** | 0.167 ** |
Sec | 0.436 ** | −0.392 ** | −0.244 ** | −0.388 ** | −0.160 ** |
Cor | −0.254 ** | 0.047 | 0.015 | 0.049 | 0.02 |
Methods | Resolution | Number | Features |
---|---|---|---|
SPA | 3.4 cm | 14 | CLSI, GDVI, MSR, NPCI, OSAVI, PPR, PSRI, RGR, RVI, Green-MEA, NIR-MEA, Red-MEA, Red-DIS, RedEdge-MEA |
7 cm | 17 | CLSI, DVIRE, GDVI, GI, GNDVI, MSR, NDVI, NPCI, NRI, OSAVI, PPR, RGR, RRI, RVI, WI, NIR-MEA, RedEdge-MEA | |
14 cm | 9 | CLSI, GDVI, GI, NRI, OSAVI, RGR, RRI, RVI, WI | |
30 cm | 8 | GI, RGR, RVI, TCARI, Blue-MEA, NIR-MEA, Red-MEA, RedEdge-HOM | |
Boruta–SHAP | 3.4 cm | 44 | ARI, CCCI, CLSI, DVIRE, GDVI, GI, GNDVI, GVI, MSR, NDVI, NPCI, NRI, OSAVI, PPR, PSRI, RBNDVI, RGR, RRI, RVI, TCARI, WI, Blue-MEA, Blue-VAR, Blue-HOM, Blue-CON, Blue-DIS, Blue-ENT, Blue-SEC, Green-MEA, Green-VAR, Green-HOM, Green-CON, Green-DIS, Green-ENT, Green-SEC, NIR-MEA, Red-MEA, RedEdge-MEA, RedEdge-VAR, RedEdge-HOM, RedEdge-CON, RedEdge-DIS, RedEdge-ENT, RedEdge-SEC |
7 cm | 43 | ARI, CLSI, DVIRE, GDVI, GI, GNDVI, GVI, MSR, NDVI, NPCI, NRI, OSAVI, PPR, PSRI, RBNDVI, RGR, RRI, RVI, TCARI, WI, Blue-MEA, Blue-VAR, Blue-HOM, Blue-CON, Blue-DIS, Blue-ENT, Blue-SEC, Green-MEA, Green-VAR, Green-HOM, Green-CON, Green-DIS, Green-ENT, Green-SEC, NIR-MEA, Red-MEA, RedEdge-MEA, RedEdge-VAR, RedEdge-HOM, RedEdge-CON, RedEdge-DIS, RedEdge-ENT, RedEdge-SEC | |
14 cm | 40 | ARI, CLSI, DVIRE, GDVI, GI, GNDVI, GVI, MSR, NDVI, NPCI, NRI, OSAVI, PPR, PSRI, RBNDVI, RGR, RRI, RVI, TCARI, WI, Blue-MEA, Blue-VAR, Blue-HOM, Blue-CON, Blue-DIS, Blue-ENT, Blue-SEC, Green-MEA, Green-VAR, Green-HOM, Green-CON, Green-DIS, Green-ENT, Green-SEC, NIR-MEA, Red-MEA, Red-HOM, RedEdge-MEA, RedEdge-HOM, RedEdge-DIS | |
30 cm | 28 | DVIRE, GDVI, GI, GNDVI, GVI, MSR, NDVI, NPCI, NRI, OSAVI, PPR, PSRI, RGR, RRI, RVI, TCARI, WI, Blue-MEA, Blue-VAR, Blue-HOM, Blue-CON, Blue-DIS, Blue-ENT, Blue-SEC, Green-MEA, Green-HOM, NIR-MEA, RedEdge-MEA | |
ReliefF | 3.5 cm | 23 | DVIRE, GDVI, GI, GNDVI, GVI, MSR, NPCI, NRI, OSAVI, PPR, PSRI, RGR, RRI, RVI, TCARI, WI, Blue-DIS, Blue-ENT, Blue-HOM, Blue-MEA, Blue-SEC, NIR-MEA, RedEdge-MEA |
7 cm | 18 | DVIRE, GDVI, GVI, OSAVI, PPR, RRI, TCARI, WI, Blue-ENT, Blue-HOM, Blue-MEA, Blue-SEC, RedEdge-MEA, NIR-MEA | |
14 cm | 14 | DVIRE, GDVI, GVI, MSR, NPCI, OSAVI, PPR, RRI, RVI, TCARI, WI, Blue-DIS, Blue-ENT, Blue-HOM, Blue-MEA, Blue-SEC, NIR-MEA, RedEdge-MEA | |
30 cm | 8 | PPR, WI, GDVI, TCARI, DVIRE, Blue-MEA, NIR-MEA, RedEdge-MEA |
Methods | Resolution | Number of Features | KNN | SVM | RF | |||
---|---|---|---|---|---|---|---|---|
OA (%) | Kappa | OA (%) | Kappa | OA (%) | Kappa | |||
All feature | 3.4 cm | 62 | 96.1 | 0.920 | 98.4 | 0.968 | 99.2 | 0.984 |
7 cm | 62 | 93.7 | 0.873 | 97.6 | 0.952 | 99.2 | 0.984 | |
14 cm | 62 | 92.6 | 0.851 | 97.9 | 0.958 | 98.7 | 0.973 | |
30 cm | 62 | 87.6 | 0.749 | 92.9 | 0.857 | 97.4 | 0.947 | |
SPA | 3.4 cm | 14 | 92.9 | 0.856 | 92.6 | 0.851 | 98.7 | 0.973 |
7 cm | 17 | 93.9 | 0.877 | 91.3 | 0.826 | 97.9 | 0.958 | |
14 cm | 9 | 88.4 | 0.764 | 88.6 | 0.771 | 93.7 | 0.872 | |
30 cm | 8 | 88.9 | 0.777 | 88.1 | 0.761 | 94.7 | 0.894 | |
ReliefF | 3.5 cm | 23 | 96.0 | 0.920 | 98.2 | 0.963 | 99.2 | 0.984 |
7 cm | 18 | 95.5 | 0.909 | 98.4 | 0.968 | 98.9 | 0.979 | |
14 cm | 14 | 92.9 | 0.856 | 95.8 | 0.915 | 97.1 | 0.942 | |
30 cm | 8 | 88.4 | 0.768 | 87.1 | 0.742 | 94.5 | 0.889 | |
Boruta–SHAP | 3.4 cm | 44 | 96.6 | 0.931 | 98.4 | 0.968 | 99.5 | 0.989 |
7 cm | 43 | 93.4 | 0.867 | 98.2 | 0.963 | 99.2 | 0.984 | |
14 cm | 40 | 91.8 | 0.835 | 97.6 | 0.952 | 98.4 | 0.968 | |
30 cm | 28 | 89.7 | 0.792 | 91.6 | 0.830 | 96.3 | 0.926 |
Methods | Resolution | Number of Features | KNN | SVM | RF | |||
---|---|---|---|---|---|---|---|---|
OA (%) | Kappa | OA (%) | Kappa | OA (%) | Kappa | |||
All feature | 3.4 cm | 62 | 93.3 | 0.865 | 96.9 | 0.938 | 95.7 | 0.914 |
7 cm | 62 | 90.2 | 0.804 | 96.3 | 0.926 | 95.7 | 0.914 | |
14 cm | 62 | 88.9 | 0.779 | 93.8 | 0.877 | 92.6 | 0.853 | |
30 cm | 62 | 76.6 | 0.534 | 87.1 | 0.743 | 87.7 | 0.755 | |
SPA | 3.4 cm | 14 | 92.1 | 0.841 | 92.1 | 0.841 | 95.7 | 0.914 |
7 cm | 17 | 88.9 | 0.779 | 90.8 | 0.816 | 94.5 | 0.889 | |
14 cm | 9 | 77.3 | 0.547 | 82.8 | 0.656 | 85.9 | 0.717 | |
30 cm | 8 | 74.2 | 0.485 | 79.1 | 0.582 | 78.5 | 0.571 | |
ReliefF | 3.5 cm | 23 | 93.8 | 0.877 | 96.3 | 0.926 | 95.7 | 0.914 |
7 cm | 18 | 92.6 | 0.853 | 95.7 | 0.914 | 95.7 | 0.914 | |
14 cm | 14 | 87.7 | 0.755 | 94.5 | 0.889 | 92.6 | 0.853 | |
30 cm | 8 | 81.6 | 0.632 | 82.2 | 0.645 | 84.1 | 0.682 | |
Boruta–SHAP | 3.4 cm | 44 | 95.1 | 0.902 | 98.2 | 0.963 | 96.3 | 0.926 |
7 cm | 43 | 92.6 | 0.853 | 96.3 | 0.926 | 95.1 | 0.902 | |
14 cm | 40 | 87.7 | 0.755 | 95.7 | 0.914 | 92.6 | 0.853 | |
30 cm | 28 | 77.3 | 0.546 | 88.3 | 0.767 | 86.5 | 0.731 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, T.; Fang, J.; Yin, C.; Li, Y.; Fu, W.; Zhang, H.; Wang, J.; Zhang, X. Recognition of Rubber Tree Powdery Mildew Based on UAV Remote Sensing with Different Spatial Resolutions. Drones 2023, 7, 533. https://doi.org/10.3390/drones7080533
Zeng T, Fang J, Yin C, Li Y, Fu W, Zhang H, Wang J, Zhang X. Recognition of Rubber Tree Powdery Mildew Based on UAV Remote Sensing with Different Spatial Resolutions. Drones. 2023; 7(8):533. https://doi.org/10.3390/drones7080533
Chicago/Turabian StyleZeng, Tiwei, Jihua Fang, Chenghai Yin, Yuan Li, Wei Fu, Huiming Zhang, Juan Wang, and Xirui Zhang. 2023. "Recognition of Rubber Tree Powdery Mildew Based on UAV Remote Sensing with Different Spatial Resolutions" Drones 7, no. 8: 533. https://doi.org/10.3390/drones7080533
APA StyleZeng, T., Fang, J., Yin, C., Li, Y., Fu, W., Zhang, H., Wang, J., & Zhang, X. (2023). Recognition of Rubber Tree Powdery Mildew Based on UAV Remote Sensing with Different Spatial Resolutions. Drones, 7(8), 533. https://doi.org/10.3390/drones7080533