Using Ground and UAV Vegetation Indexes for the Selection of Fungal-Resistant Bread Wheat Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Climate Conditions of Experimental Sites
2.2.1. Tordómar
2.2.2. Briviesca
2.2.3. Elorz
2.2.4. Sos Del Rey Católico
2.2.5. Ejea de Los Caballeros
2.3. Experimental Trial Design
2.4. Imaging and Sensor Field Measurements
2.4.1. Dualex
2.4.2. Trimble GreenSeeker
2.4.3. RGB Images and Derived Vegetation Indexes
2.4.4. Aerial Images
2.5. Additional Analyses
2.5.1. Determination of Stable Isotopes: δ13C and δ15N of the Grains
2.5.2. Grain Yield and Protein Content (CPRO)
2.6. Statistical Processing
3. Results
3.1. Isotopic Composition of Sites with Contrasting Water Conditions
3.2. Comparison of Leaf Pigments between Treated and Untreated Plants
3.3. Comparison of Treated and Untreated Trials Using Different RGB Ground Vegetation Indexes for All Experimental Sites and Visits
3.4. Relationships between Ground Vegetation Indexes with Grain Yield and Protein
3.5. Comparisons of Aerial and Ground RGB Images and Analysis of Aerial Images for the Assessment of Treated and Untreated Trials at the Five Different Study Sites
3.6. Evaluation of Ground- and Aerial-Acquired Vegetation Indexes Assessing Genotypic Variability in the Response to Disease Treatments
3.7. Combinations of NDVI, Grain Yield and Treatments for Guiding the Selection of Genotypes
4. Discussion
- What were the differences in crop status between the different sites on dates of visit?
- Are RGB and NDVI vegetation indexes able to detect the treatments and fungal tolerance?
- When is the best phenological time to assess vegetation indexes in order to screen for fungal resistance?
- Can proximal imaging or aerial imaging be used accurately to select cultivars with a greater fungal resistance?
4.1. What Were the Differences in Crop Status between the Different Sites on Dates of Visit?
4.2. Are RGB and NDVI Vegetation Indexes Able to Detect the Treatments and Fungal Tolerance?
4.3. When Is the Best Time to Assess Vegetation Indexes in Order to Screen for Fungal Resistance?
4.4. Can Proximal Imaging or UAVs Be Used Accurately to Select Cultivars with a Greater Fungal Resistance?
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Busby, J.W.; Busby, J. Climate Change and National Security: An Agenda for Action; Council on Foreign Relations Press: New York, NY, USA, 2007. [Google Scholar]
- Duller, R.A.; Armitage, J.J.; Manners, H.R.; Grimes, S.; Jones, T.D. Delayed sedimentary response to abrupt climate change at the Paleocene-Eocene boundary, northern Spain. Geology 2019, 47, 159–162. [Google Scholar] [CrossRef] [Green Version]
- Wolf, J. Effects of climate change on wheat production potential in the European Community. Eur. J. Agron. 1993, 2, 281–292. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, A.; Rosenzweig, C.; Pereira, D. Agricultural impacts of climate change in Spain: Developing tools for a spatial analysis. Glob. Environ. Chang. J. 2000, 10, 69–80. [Google Scholar] [CrossRef]
- Porras, R.; Luque, A.P.; Rojas, C.D.M. Behavior of Spanish durum wheat genotypes against Zymoseptoria tritici: Resistance and susceptibility. SJAR 2021, 19, 1. [Google Scholar] [CrossRef]
- Martínez-Moreno, F.; Solís, I. Wheat rust evolution in Spain: An historical review. Phytopathology 2019, 58, 1. [Google Scholar]
- Martínez-Moreno, F.; Giraldo, P.; Nieto, C.; Ruiz, M. Resistance to leaf and yellow rust in a collection of Spanish bread wheat landraces and association with ecogeographical variables. Agronomy 2022, 12, 187. [Google Scholar] [CrossRef]
- Bravo, C.; Moshou, D.; West, J.; McCartney, A.; Ramon, H. Early disease detection in wheat fields using spectral reflectance. Biosyst. Eng. 2003, 84, 137–145. [Google Scholar] [CrossRef]
- Suffert, F.; Ravigné, V.; Sache, I. Seasonal changes drive short-term selection for fitness traits in the wheat pathogen Zymoseptoria tritici. Appl. Environ. 2015, 81, 6367–6379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porras, R.; Miguel-Rojas, C.; Pérez-de-Luque, A.; Sillero, J.C. Macro and Microscopic Characterization of Components of Resistance against Puccinia striiformis f. sp. tritici in a Collection of Spanish Bread Wheat Cultivars. Agronomy 2022, 12, 1239. [Google Scholar] [CrossRef]
- Shakoor, N.; Lee, S.; Mockler, T.C. High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Plant biol. 2017, 38, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Araus, J.L.; Kefauver, S.C. Breeding to adapt agriculture to climate change: Affordable phenotyping solutions. Plant Biol. 2017, 45, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Mujeeb-Kazi, A.; Kazi, A.G.; Dundas, I.; Rasheed, A.; Ogbonnaya, F.; Kishii, M.; Farrakh, S. Genetic diversity for wheat improvement as a conduit to food security. Agronomy 2013, 122, 179–257. [Google Scholar]
- Reynolds, D.; Baret, F.; Welcker, C.; Bostrom, A.; Ball, J.; Cellini, F.; Tardieu, F. What is cost-efficient phenotyping? Optimizing costs for different scenarios. Plant Sci. J. 2019, 282, 14–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heidarian Dehkordi, R.; El Jarroudi, M.; Kouadio, L.; Meersmans, J.; Beyer, M. Monitoring wheat leaf rust and stripe rust in winter wheat using high-resolution UAV-based red-green-blue imagery. Remote Sens. 2020, 12, 3696. [Google Scholar] [CrossRef]
- Moshou, D.; Bravo, C.; West, J.; Wahlen, S.; McCartney, A.; Ramon, H. Automatic detection of ‘yellow rust’ in wheat using reflectance measurements and neural networks. Comp. Electron. Agric. 2004, 44, 173–188. [Google Scholar] [CrossRef]
- Boulent, J.; Foucher, S.; Théau, J.; St-Charles, P.-L. Convolutional Neural Networks for the automatic identification of plant diseases. Front. Plant Sci. 2019, 10, 941. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Araus, J.L.; Kefauver, S.C.; Zaman-Allah, M.; Olsen, M.S.; Cairns, J.E. Translating high-throughput phenotyping into genetic gain. Trends Plant Sci. 2018, 23, 451–466. [Google Scholar] [CrossRef] [Green Version]
- Vergara-Diaz, O.; Kefauver, S.C.; Elazab, A.; Nieto-Taladriz, M.T.; Araus, J.L. Grain yield losses in yellow-rusted durum wheat estimated using digital and conventional parameters under field conditions. Crop J. 2015, 3, 200–210. [Google Scholar] [CrossRef] [Green Version]
- Arora, A.; Sharma, R.K.; Saharan, M.S.; Venkatesh, K.; Dilbaghi, N.; Sharma, I.; Tiwari, R. Quantifying stripe rust reactions in wheat using a handheld NDVI remote sensor. Gates Open Res. 2019, 3, 955. [Google Scholar]
- Ashourloo, D.; Mobasheri, M.R.; Huete, A. Evaluating the effect of different wheat rust disease symptoms on vegetation indices using hyperspectral measurements. Remote Sens. 2014, 6, 5107–5123. [Google Scholar] [CrossRef] [Green Version]
- Jing, X.; Du, K.; Duan, W.; Zou, Q.; Zhao, T.; Li, B.; Yan, L. Quantifying the effects of stripe rust disease on wheat canopy spectrum based on eliminating non-physiological stresses. Crop J. 2022, 10, 1284–1291. [Google Scholar] [CrossRef]
- Zhou, B.; Elazab, A.; Bort, J.; Vergara, O.; Serret, M.D.; Araus, J.L. Low-cost assessment of wheat resistance to yellow rust through conventional RGB images. Comput. Electron. Agric. 2015, 116, 20–29. [Google Scholar] [CrossRef]
- Gracia-Romero, A.; Kefauver, S.C.; Fernández-Gallego, J.A.; Vergara-Díaz, O.; Nieto-Taladriz, M.T.; Araus, J.L. UAV and ground image-based phenotyping: A proof of concept with Durum wheat. Remote Sens. 2019, 11, 1244. [Google Scholar] [CrossRef] [Green Version]
- Cerovic, Z.G.; Masdoumier, G.; Ghozlen, N.B.; Latouche, G. A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol. Plant. 2012, 146, 251–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerovic, Z.G.; Ghozlen, N.B.; Milhade, C.; Obert, M.; Debuisson, S.; Le Moigne, M. Non-destructive Diagnostic Test for Nitrogen Nutrition of Grapevine (Vitis vinifera L.) Based on Dualex Leaf-Clip Measurements in the. Field. J. Agric. Food Chem. 2015, 63, 3669–3680. [Google Scholar] [CrossRef]
- Cerovic, Z.G.; Ounis, A.; Cartelat, A.; Latouche, G.; Goulas, Y.; Meyer, S.; Moya, I. Chlorophyll fluorescence excitation spectra can be used for the nondestructive in situ assessment of UV-absorbing compounds in leaves. Plant Cell Environ. 2001, 25, 1663–1676. [Google Scholar] [CrossRef]
- Goulas, Y.; Cerovic, Z.G.; Cartelat, A.; Moya, I. Dualex: A new instrument for field measurements of epidermal ultraviolet absorbance by chlorophyll fluorescence. Appl. Opt. 2004, 43, 4488–4496. [Google Scholar] [CrossRef]
- Tremblay, N.; Wang, Z.; Belec, C. Performance of Dualex in spring wheat for crop nitrogen status assessment, yield prediction and estimation of soil nitrate content. J. Plant Nutr. 2009, 33, 57–70. [Google Scholar] [CrossRef]
- Kefauver, S. University of Barcelona, Barcelona, Spain. 2018. Available online: https://gitlab.com/sckefauver/MosaicTool/ (accessed on 25 September 2021).
- Zaman-Allah, M.; Vergara, O.; Araus, J.L.; Tarekegne, A.; Magorokosho, C.; Zarco-Tejada, P.J.; Hornero, A.; Albà, A.H.; Das, B.; Craufurd, P. Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant Methods 2015, 11, 35. [Google Scholar] [CrossRef] [Green Version]
- Hunt, E.R.; Cavigelli, M.; Daughtry, C.S.; Mcmurtrey, J.E.; Walthall, C.L. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precis. Agric. 2005, 6, 359–378. [Google Scholar] [CrossRef]
- Hunt, E.R.; Dorais Wamy, P.C.; Cmurtrey, M.J.E.; Daughtry, C.S.T.; Perry, E.M.; Akhmedov, B. A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Int. J. Appl. Earth Obser. Geoinf. 2013, 21, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Casadesus, J.; Kaya, Y.; Bort, J.; Nachit, M.M.; Araus, J.L.; Amor, S.; Ferrazzano, G.; Maalouf, F. Using vegetation indexes derived from conventional digital cameras as selection criteria for wheat breeding in water-limited environments. Ann. Appl. Biol. 2007, 150, 227–236. [Google Scholar] [CrossRef]
- Vergara-Díaz, O.; Zaman-Allah, M.A.; Masuka, B.; Hornero, A.; Zarco-Tejada, P.; Prasanna, B.M.; Araus, J.L. A novel remote sensing approach for prediction of maize yield under different conditions of nitrogen fertilization. Front. Plant Sci. 2016, 7, 666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stern, A.; Doraiswamy, P.C.; Hunt, E.R., Jr. Changes in crop rotation in Iowa determined from the United States Department of Agriculture, National Agricultural Statistics Service cropland data layer product. J. Appl. Remote Sens. 2012, 6, 063590. [Google Scholar] [CrossRef]
- Hunt, E.R.; Daughtry, C.S.T.; Eitel, J.U.; Long, D.S. Remote sensing leaf chlorophyll content using a visible band index. Agron. J. 2011, 103, 1090–1099. [Google Scholar] [CrossRef] [Green Version]
- Kefauver, S.; Kerfal, S.; Fernandez Gallego, J.A.; El-Haddad, G. CerealScanner Gitlab. Available online: https://gitlab.com/sckfauver/cerealscanner (accessed on 12 November 2021).
- Flohr, P.; Müldner, G.; Jenkins, E. Carbon stable isotope analysis of cereal remains as a way to reconstruct water availability: Preliminary results. Water Hist. 2011, 3, 121–144. [Google Scholar] [CrossRef]
- Porep, J.U.; Kammerer, D.R.; Carle, R. On-line application of near infrared (NIR) spectroscopy in food production. Trends Food Sci. Technol. 2015, 46, 211–230. [Google Scholar] [CrossRef]
- Simón, M.R.; Fleitas, M.C.; Castro, A.C.; Schierenbeck, M. How foliar fungal diseases affect nitrogen dynamics, milling, and end-use quality of wheat. Front. Plant Sci. 2020, 11, 569401. [Google Scholar] [CrossRef] [PubMed]
- Surovy, M.Z.; Mahmud, N.U.; Bhattacharjee, P.; Hossain, M.S.; Mehebub, M.S.; Rahman, M.; Islam, T. Modulation of nutritional and biochemical properties of wheat grains infected by blast fungus Magnaporthe oryzae Triticum pathotype. Front. Microbiol. 2020, 11, 1174. [Google Scholar] [CrossRef]
- Rezzouk, F.Z.; Gracia-Romero, A.; Kefauver, S.C.; Gutiérrez, N.A.; Aranjuelo, I.; Serret, M.D.; Araus, J.L. Remote sensing techniques and stable isotopes as phenotyping tools to assess wheat yield performance: Effects of growing temperature and vernalization. Plant Sci. 2020, 295, 110281. [Google Scholar] [CrossRef] [PubMed]
- Araus, J.L.; Villegas, D.; Aparicio, N.; Del Moral, L.G.; El Hani, S.; Rharrabti, Y.; Royo, C. Environmental factors determining carbon isotope discrimination and yield in durum wheat under Mediterranean conditions. Crop sci. 2003, 43, 170–180. [Google Scholar] [CrossRef]
- Mielniczuk, E.; Skwaryło-Bednarz, B. Fusarium head blight, mycotoxins and strategies for their reduction. Agronomy 2020, 10, 509. [Google Scholar] [CrossRef] [Green Version]
- Suffert, F.; Sache, I.; Lannou, C. Early stages of septoria tritici blotch epidemics of winter wheat: Build-up, over seasoning, and release of primary inoculum. Plant Pathol. 2011, 60, 166–177. [Google Scholar] [CrossRef]
- El Jarroudi, M.; Kouadio, L.; El Jarroudi, M.; Junk, J.; Bock, C.; Diouf, A.A.; Delfosse, P. Improving fungal disease forecasts in winter wheat: A critical role of intra-day variations of meteorological conditions in the development of Septoria leaf blotch. Field Crops Res. 2017, 213, 12–20. [Google Scholar] [CrossRef]
- Dammer, K.H.; Garz, A.; Hobart, M.; Schirrmann, M. Combined UAV and tractor-based stripe rust monitoring in winter wheat under field conditions. Agron. J. 2022, 114, 651–661. [Google Scholar] [CrossRef]
- Sabburg, R.; Obanor, F.; Aitken, E.; Chakraborty, S. Changing fitness of a necrotrophic plant pathogen under increasing temperature. Glob. Chang. Biol. 2015, 21, 3126–3137. [Google Scholar] [CrossRef]
- Doohan, F.M.; Brennan, J.; Cooke, B.M. Influence of climatic factors on Fusarium species pathogenic to cereals. In Epidemiology of Mycotoxin Producing Fungi: Under the Aegis of Cost Action 835 ‘Agriculturally Important Toxigenic Fungi 1998–2003′, EU project (QLK 1-CT-1998–01380); Springer: Berlin/Heidelberg, Germany, 2003; pp. 755–768. [Google Scholar]
- Bhandari, M.; Ibrahim, A.M.; Xue, Q.; Jung, J.; Chang, A.; Rudd, J.C.; Landivar, J. Assessing winter wheat foliage disease severity using aerial imagery acquired from small Unmanned Aerial Vehicle (UAV). Comput. Electron. Agric. 2020, 176, 105665. [Google Scholar] [CrossRef]
- Siou, D.; Gélisse, S.; Laval, V.; Repinçay, C.; Canalès, R.; Suffert, F.; Lannou, C. Effect of wheat spike infection timing on Fusarium head blight development and mycotoxin accumulation. Plant Pathol. 2014, 63, 390–399. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Q.; Lin, F.; Yin, X.; Gu, C.; Qiao, H. Development and evaluation of a new spectral disease index to detect wheat fusarium head blight using hyperspectral imaging. Sensors 2020, 20, 2260. [Google Scholar] [CrossRef] [Green Version]
- Moazzam, S.I.; Khan, U.S.; Nawaz, T.; Qureshi, W.S. Crop and Weeds Classification in Aerial Imagery of Sesame Crop Fields Using a Patch-Based Deep Learning Model-Ensembling Method. In Proceedings of the 2nd International Conference on Digital Futures and Transformative Technologies (ICoDT2), Rawalpindi, Pakistan, 24–26 May 2022; pp. 1–7. [Google Scholar]
- McMullen, M.; Bergstrom, G.; De Wolf, E.; Dill-Macky, R.; Hershman, D.; Shaner, G.; Van Sanford, D. Fusarium head blight disease cycle, symptoms, and impact on grain yield and quality frequency and magnitude of epidemics since 1997. Plant. Dis. 2012, 96, 1712–1728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateen, A.; Zhu, Q. Weed detection in wheat crop using UAV for precision agriculture. Pak. J. Agric. Sci. 2019, 56, 809–817. [Google Scholar]
- Francesconi, S.; Harfouche, A.; Maesano, M.; Balestra, G.M. UAV-based thermal, RGB imaging and gene expression analysis allowed detection of Fusarium head blight and gave new insights into the physiological responses to the disease in durum wheat. Front. Plant Sci. 2021, 12, 628575. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Veeranampalayam-Sivakumar, A.N.; Bhatta, M.; Garst, N.D.; Stoll, H.; Stephen Baenziger, P.; Shi, Y. Principal variable selection to explain grain yield variation in winter wheat from features extracted from UAV imagery. Plant Methods 2019, 15, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Bajwa, A.A.; Walsh, M.; Chauhan, B.S. Weed management using crop competition in Australia. Crop Prot. 2017, 95, 8–13. [Google Scholar] [CrossRef]
- Champeil, A.; Doré, T.; Fourbet, J.F. Fusarium head blight: Epidemiological origin of the effects of cultural practices on head blight attacks and the production of mycotoxins by Fusarium in wheat grains. Plant Sci. 2004, 166, 1389–1415. [Google Scholar] [CrossRef]
- Yuen, G.Y.; Schoneweis, S.D. Strategies for managing Fusarium head blight and deoxynivalenol accumulation in wheat. Int. J. Food Microbiol. 2007, 119, 126–130. [Google Scholar] [CrossRef]
- Lucas, J.A. Advances in plant disease and pest management. J. Agric. Sci. 2011, 149, 91–114. [Google Scholar] [CrossRef]
- Jarroudi, M.E.; Kouadio, L.; Beyer, M.; Junk, J.; Hoffmann, L.; Tychon, B.; Delfosse, P. Economics of a decision support system for managing the main fungal diseases of winter wheat in the Grand-Duchy of Luxembourg. Field Crops Res. 2015, 172, 32–41. [Google Scholar] [CrossRef] [Green Version]
Index | Formula |
---|---|
Green Area (GA) | 60 < Hue < 180 [35] |
Greener Area (GGA) | 80 < Hue < 180 [35] |
Crop Senescence Index (CSI) | (GA-GGA)/GA [36] |
Normalized Green–Red Difference Index (NGRDI) | (R550 − R670)/(R550 + R670) [37] |
Triangular Greenness Index (TGI) | −0.5[190(R670 − R550) − 120(R670 − R480)] [38] |
Tordómar | Briviesca | Elorz | Sos | Ejea | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | p-Value | Mean | p-Value | Mean | p-Value | Mean | p-Value | Mean | p-Value | |
Chl | T = 48.69 | 0.81 | T = 35.90 | 0.08 | T = 1.50 | 0.5 | T = 34.92 | 0.97 | T = 48.00 | 0.011 * |
U = 48.69 | U = 35.20 | U = 1.54 | U = 34.94 | U = 45.78 | ||||||
Flav | T = 1.54 | 0.83 | T = 1.553 | 0.19 | T = 1.510 | 0.002 ** | T = 1.46 | 0.2 | T = 1.58 | 0.005 * |
U= 1.55 | U = 1.552 | U = 1.592 | U = 1.44 | U = 1.62 | ||||||
Anth | T = 0.056 | 0.94 | T = 0.049 | 0.8 | T = 0.023 | 0.28 | T = 0.026 | 0.93 | T = 0.023 | 0.088 |
U = 0.054 | U = 0.047 | U = 0.021 | U = 0.026 | U = 0.021 | ||||||
NBI | T = 31.65 | 0.75 | T = 23.38 | 0.14 | T = 35.69 | 0.006 ** | T = 24.29 | 0.65 | T = 30.4 | 0.000 *** |
U = 31.85 | U = 22.82 | U = 34.56 | U = 24.64 | U = 28.08 |
Aerial | GA | GGA | CSI | NGRDI | NGRDIveg | TGI | TGIveg | |
---|---|---|---|---|---|---|---|---|
Ground | ||||||||
Tordómar | 0.599 | 0.508 | 0.329 | 0.793 | 0.639 | 0.741 | 0.627 | |
Briviesca | 0.568 | 0.543 | 0.355 | 0.810 | 0.699 | 0.677 | 0.583 | |
Elorz | 0.048 | 0.578 | 0.552 | 0.646 | 0.706 | 0.619 | 0.639 | |
Sos | −0.077 | 0.313 | 0.250 | 0.773 | 0.546 | 0.800 | 0.349 | |
Ejea | 0.247 | 0.139 | 0.041 | 0.559 | 0.167 | 0.817 | 0.256 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamdane, Y.; Segarra, J.; Buchaillot, M.L.; Rezzouk, F.Z.; Gracia-Romero, A.; Vatter, T.; Benfredj, N.; Hameed, R.A.; Gutiérrez, N.A.; Torró Torró, I.; et al. Using Ground and UAV Vegetation Indexes for the Selection of Fungal-Resistant Bread Wheat Varieties. Drones 2023, 7, 454. https://doi.org/10.3390/drones7070454
Hamdane Y, Segarra J, Buchaillot ML, Rezzouk FZ, Gracia-Romero A, Vatter T, Benfredj N, Hameed RA, Gutiérrez NA, Torró Torró I, et al. Using Ground and UAV Vegetation Indexes for the Selection of Fungal-Resistant Bread Wheat Varieties. Drones. 2023; 7(7):454. https://doi.org/10.3390/drones7070454
Chicago/Turabian StyleHamdane, Yassine, Joel Segarra, Maria Luisa Buchaillot, Fatima Zahra Rezzouk, Adrian Gracia-Romero, Thomas Vatter, Nermine Benfredj, Rana Arslan Hameed, Nieves Aparicio Gutiérrez, Isabel Torró Torró, and et al. 2023. "Using Ground and UAV Vegetation Indexes for the Selection of Fungal-Resistant Bread Wheat Varieties" Drones 7, no. 7: 454. https://doi.org/10.3390/drones7070454
APA StyleHamdane, Y., Segarra, J., Buchaillot, M. L., Rezzouk, F. Z., Gracia-Romero, A., Vatter, T., Benfredj, N., Hameed, R. A., Gutiérrez, N. A., Torró Torró, I., Araus, J. L., & Kefauver, S. C. (2023). Using Ground and UAV Vegetation Indexes for the Selection of Fungal-Resistant Bread Wheat Varieties. Drones, 7(7), 454. https://doi.org/10.3390/drones7070454