Automatic Modulation Classification Using Deep Residual Neural Network with Masked Modeling for Wireless Communications
Abstract
:1. Introduction
- An AMC method based on a deep residual neural network with masked modeling (DRMM) is proposed for solving the problems of modulated signal classification under limited training samples.
- The proposed AMC method is evaluated on simulated dataset and RadioML 2016.10A, and compared with three AMC methods. Simulation results show the proposed AMC method has better classification performance.
- The factor, i.e., masked areas, that makes an effort on the classification performance of the proposed AMC method is analyzed. In addition, the effectiveness of the proposed AMC method with a semi-supervised scenario is also discussed.
2. Related Work
2.1. LB
2.2. FB
3. Problem Formulation
3.1. AMC Description
3.2. Signal Model
4. Our Proposed DRMM-Based AMC Method
- Autoencoder-classifier architecture: It extracts the potential features of masked signals, and then uses them to reconstruct the original signals at the masked area and predict the ground-truth labels of masked signals.
- Masked modeling: Given the input signal samples, this part designs how to select the area to be masked and how to design the objective function for enabling the autoencoder to reconstruct the masked part of signals.
- Training process: The masked signals is input to autoencoder for extracting the features, reconstructing the masked area of mask signals and classifying its ground-truth label in the forward propagation. The loss is calculated and back propagated for updating the parameters of autoencoder-classifier.
4.1. Autoencoder-Classifier Architecture
4.2. Masked Modeling
4.3. Training Process
Algorithm 1 The training process of proposed DRMM-based AMC method for drones communications. |
Parameters required: ● : A batch of training signals; ● T: The number of training iterations; ● B: The number of training batch size; ● : Learning rate; ● and : The function of autoencoder and classifier, respectively; ● and : The parameter of autoencoder and classifier, respectively; ● : The predicted label; Train on training signals : |
1. for to T do: |
2. for to B do: |
[Forward propagation]: |
3. Obtain the masked original signals |
4. Obtain the demasked original signals ; |
5. Obtain the reconstructed signals and features : |
6. Obtain the demarked-reconstructed signals : |
7. Obtain the predicted class distribution: |
8. Calculate loss function: |
[Backward propagation]: |
9. Update parameters: |
10. end for |
11. end for |
12. Save model parameters |
5. Experimental Results
5.1. Simulation Parameters
5.2. Dataset Description
5.3. Comparative Methods
5.3.1. Machine Learning-Based AMC
5.3.2. Real-Residual Neural Network-BASED AMC
5.3.3. Deep Reconstruction and Classification Network-Based (DRCN) AMC
5.4. Simulation Analysis
5.4.1. Classification Accuracy: Machine Learning vs. Deep Learning
5.4.2. Classification Accuracy: R-ResNet vs. C-ResNet
5.4.3. Classification Accuracy: DRMM vs. Comparative Methods
5.4.4. Influence of Masked Area on Classification Performance of DRMM
5.4.5. Classification Performance of Semi-Supervised DRMM
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tang, F.; Mao, B.; Kato, N.; Gui, G. Comprehensive survey on machine learning in vehicular network: Technology, applications and challenges. IEEE Commun. Surv. Tutor. 2021, 23, 2027–2057. [Google Scholar] [CrossRef]
- Gui, G.; Liu, M.; Tang, F.; Kato, N.; Adachi, F. 6G: Opening new horizons for integration of comfort, security and intelligence. IEEE Wirel. Commun. 2020, 27, 126–132. [Google Scholar] [CrossRef]
- Ohtsuki, T. Machine learning in 6G wireless communications. IEICE Trans. Commun. 2023, 106, 75–83. [Google Scholar] [CrossRef]
- Gui, G.; Wang, J.; Yang, J.; Liu, M.; Sun, J.-L. Frequency division duplex massive multiple-input multiple-output downlink channel state information acquisition techniques based on deep learning. J. Data Acquis. Process. 2022, 37, 502–511. [Google Scholar]
- Wu, Q.; Ding, G.; Wang, J.; Ya, Y.D. Spatial-temporal opportunity detection for spectrum-heterogeneous cognitive radio networks: Two dimensional sensing. IEEE Trans. Wirel. Commun. 2013, 12, 516–526. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, L.; Wu, G.; Zhou, F.; Wu, Q. Automatic modulation classification using involution enabled residual networks. IEEE Wirel. Commun. Lett. 2021, 10, 2417–2420. [Google Scholar] [CrossRef]
- Jiang, Q.; Sha, J. RF fingerprinting identification based on spiking neural network for LEO-MIMO systems. IEEE Wirel. Commun. Lett. 2023, 12, 287–291. [Google Scholar] [CrossRef]
- Gui, G.; Tao, M.; Wang, C.; Fu, X.; Wang, Y. Survey of Few-Shot Learning Methods for Specific Emitter Identification. J. Nantong Univ. 2023; early access. [Google Scholar]
- Xie, Y.; Armbruster, B.; Ye, Y. Dynamic spectrum management with the competitive market model. IEEE Trans. Signal Process. 2010, 58, 2442–2446. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Nandi, A.K. Automatic Modulation Classification: Principles, Algorithms and Applications; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Lv, H.; Song, W. Threat assessment of cognitive electronic warfare to communication based on self-organizing competitive neural network. In Proceedings of the IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 18–20 June 2021; pp. 58–64. [Google Scholar]
- Weaver, C.S.; Cole, C.A.; Krumland, R.B.; Miller, M.L. The Automatic Classification of Modulation Types by Pattern Recognition; Technical Report; Stanford University: Stanford, CA, USA, 1969. [Google Scholar]
- Wei, Z.; Hu, Y. Automatic digital modulation recognition algorithms based on approximately logarithm likelihood method. In Proceedings of the International Conference on Communications, Circuits and Systems, Guangxi, China, 25–28 June 2006; pp. 834–838. [Google Scholar]
- Zheng, J.; Lv, Y. Likelihood-based automatic modulation classification in OFDM with index modulation. IEEE Trans. Veh. Technol. 2018, 67, 8192–8204. [Google Scholar] [CrossRef]
- Ho, K.C.; Prokopiw, W.; Chan, Y.T. Modulation identification by the wavelet transform. In Proceedings of the Military Communications Conference (MILCOM), San Diego, CA, USA, 5–8 November 1995; pp. 886–890. [Google Scholar]
- Hadinejad-Mahram, H.; Hero, A.O. Robust QAM modulation classification via moment matrices. In Proceedings of the 11th IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), London, UK, 18–21 September 2000; pp. 133–137. [Google Scholar]
- Wang, Y.; Gui, G.; Lin, Y.; Wu, H.-C.; Yuen, C.; Adachi, F. Few-shot specific emitter identification via deep metric ensemble learning. IEEE Internet Things J. 2022, 9, 24980–24994. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhao, P.; Wang, H.; Elhanashi, A.; Saponara, S. Fine-grained modulation classification using multi-scale radio transformer with dual-channel representation. IEEE Commun. Lett. 2022, 26, 1298–1302. [Google Scholar] [CrossRef]
- Hou, C.B.; Liu, G.W.; Tian, Q.; Zhou, Z.C.; Hua, L.J.; Lin, Y. Multi-signal modulation classification using sliding window detection and complex convolutional network in frequency domain. IEEE Internet Things J. 2022, 9, 19438–19449. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, Y.; Xue, Z.; Ohtsuki, T.; Adebisi, B.; Gui, G. Semi-supervised federated learning based intrusion detection method for internet of things. IEEE Internet Things J. 2022, 10, 8645–8657. [Google Scholar] [CrossRef]
- Yang, J.; Gu, H.; Hu, C.; Zhang, X.; Gui, G.; Gacanin, H. Deep complex-valued convolutional neural network for drone recognition based on RF fingerprinting. Drones 2022, 6, 374. [Google Scholar] [CrossRef]
- Ying, S.; Huang, S.; Chang, S.; He, J.; Feng, Z. AMSCN: A novel dual-task model for automatic modulation classification and specific emitter Identification. Sensors 2023, 23, 2476. [Google Scholar] [CrossRef]
- Chang, S.; Huang, S.; Zhang, R.; Feng, Z.; Liu, L. Multitask-learning-based deep neural network for automatic modulation classification. IEEE Internet Things J. 2022, 9, 2192–2206. [Google Scholar] [CrossRef]
- Chang, S.; Zhang, R.; Ji, K.; Huang, S.; Feng, Z. A hierarchical classification head based convolutional gated deep neural network for automatic modulation classification. IEEE Trans. Wirel. Commun. 2022, 21, 8713–8728. [Google Scholar] [CrossRef]
- Huang, S.; Dai, R.; Huang, J.; Yao, Y.; Gao, Y.; Ning, F.; Feng, Z. Automatic modulation classification using gated recurrent residual network. IEEE Internet Things J. 2020, 7, 7795–7807. [Google Scholar] [CrossRef]
- Qi, P.; Zhou, X.; Ding, Y.; Zhang, Z.; Zheng, S.; Li, Z. FedBKD: Heterogenous federated learning via bidirectional knowledge distillation for modulation classification in IoT-edge system. IEEE J. Sel. Top. Signal Process. 2023, 17, 189–204. [Google Scholar] [CrossRef]
- Tu, Y.; Lin, Y.; Zha, H.; Zhang, J.; Wang, Y.; Gui, G.; Mao, S. Large-scale real-world radio signal recognition with deep learning. Chin. J. Aeronaut. 2022, 35, 35–48. [Google Scholar] [CrossRef]
- Wang, Y.; Gui, J.; Yin, Y.; Wang, J.; Sun, J.; Gui, G.; Gacanin, H.; Sari, H.; Adachi, F. Automatic modulation classification for MIMO systems via deep learning and zero-forcing equalization. IEEE Trans. Veh. Technol. 2020, 69, 5688–5692. [Google Scholar] [CrossRef]
- Fu, X.; Gui, G.; Wang, Y.; Gacanin, H.; Adachi, F. Automatic modulation classification based on decentralized learning and ensemble learning. IEEE Trans. Veh. Technol. 2022, 71, 7942–7946. [Google Scholar] [CrossRef]
- Dong, B.; Liu, Y.; Gui, G.; Fu, X.; Dong, H.; Adebisi, B.; Gacanin, H.; Sari, H. A lightweight decentralized learning-based automatic modulation classification method for resource-constrained edge devices. IEEE Internet Things J. 2020, 9, 24708–24720. [Google Scholar] [CrossRef]
- O’Shea, T.J.; Roy, T.; Clancy, T.C. Over-the-air deep learning based radio signal classification. IEEE J. Sel. Top. Signal Process. 2018, 12, 168–179. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Song, C.; Song, Y.; Hao, X.; Yang, S.; Song, X. Deep geometric convolutional network for automatic modulation classification. Signal Image Video Process. 2020, 14, 1199–1205. [Google Scholar] [CrossRef]
- Jafar, N.; Paeiz, A.; Farzaneh, A. Automatic modulation classification using modulation fingerprint extraction. J. Syst. Eng. Electron. 2021, 32, 799–810. [Google Scholar] [CrossRef]
- Huang, J.; Huang, S.; Zeng, Y.; Chen, H.; Chang, S.; Zhang, Y. Hierarchical digital modulation classification using cascaded convolutional neural network. J. Commun. Inf. Netw. 2021, 6, 72–81. [Google Scholar] [CrossRef]
- Zhou, C.; Shi, F.; Liu, Q. Research on parameters estimation and suppression for C&I jamming. In Proceedings of the 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 10–13 October 2016; pp. 1–4. [Google Scholar]
- Shrivastava, S.; Rajesh, A.; Bora, P.K.; Chen, B.; Dai, M.; Lin, X.; Wang, H. A survey on security issues in cognitive radio based cooperative sensing. IET Commun. 2021, 15, 1751–8628. [Google Scholar] [CrossRef]
- Xie, J.; Liu, C.; Liang, Y.-C.; Fang, J. Activity pattern aware spectrum sensing: A CNN-Based Deep Learning Approach. IEEE Commun. Lett. 2019, 23, 1025–1028. [Google Scholar] [CrossRef]
- Lin, Y.; Tu, Y.; Dou, Z.; Wu, Z. The application of deep learning in communication signal modulation recognition. In Proceedings of the 2017 IEEE/CIC International Conference on Communications in China (ICCC), Qingdao, China, 22–24 October 2017; pp. 1–5. [Google Scholar]
- Huang, K.; Yang, J.; Liu, H.; Hu, P. Deep Learning of Radio Frequency Fingerprints from Limited Samples by Masked Autoencoding. IEEE Wirel. Commun. Lett. 2022; early access. [Google Scholar] [CrossRef]
- Xie, Z.; Zhang, Z.; Cao, Y.; Lin, Y.; Bao, J.; Yao, Z.; Dai, Q.; Hu, H. SimMIM: A simple framework for masked image modeling. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 9643–9653. [Google Scholar]
- O’Shea, T.; West, N. Radio machine learning dataset generation with GNU radio. In Proceedings of the GNU Radio Conference, Boulder, CO, USA, 12–16 September 2016; pp. 1–6. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Wang, Y.; Gui, G.; Gacanin, H.; Ohtsuki, T.; Sari, H.; Adachi, F. Transfer learning for semi-supervised automatic modulation classification in ZF-MIMO systems. IEEE J. Emerg. Sel. Top. Circuits Syst. 2020, 10, 231–239. [Google Scholar] [CrossRef]
- Oliver, A.; Odena, A.; Raffel, C.; Cubuk, E.D.; Goodfellow, I.J. Realistic Evaluation of Semi-Supervised Learning Algorithms. Available online: https://arxiv.org/abs/1804.09170 (accessed on 24 April 2018).
Method | R-ResNet | SVM with HOC |
---|---|---|
Acc (Simulated Dataset) | 61.87% | 44.00% |
Acc (RadioML 2016.10A) | 80.28% | 51.10% |
Method | R-ResNet | C-ResNet |
---|---|---|
Acc (Simulated Dataset) | 61.87% | 62.17% |
Acc (RadioML 2016.10A) | 80.28% | 80.63% |
Method | C-ResNet | C-ResNet | DRCN | DRMM (R) | DRMM (C) |
---|---|---|---|---|---|
Acc (Simulated Dataset) | 62.17% | 54.96% | 58.47% | 57.86% | 60.72% |
Acc (RadioML 2016.10A) | 80.63% | 69.75% | 70.95% | 73.31% | 72.11% |
Method | DRMM | DRMM | DRMM | DRMM |
---|---|---|---|---|
Masked area | 10% | 30% | 50% | 70% |
Acc (Simulated Dataset) | 57.84% | 60.72% | 58.90% | |
Acc (RadioML 2016.10A) | 64.44% | 69.92% | 70.24% |
Method | C-ResNet | C-ResNet | DRCN | DRMM |
---|---|---|---|---|
Sample percentage | 100% | 20% | 20% | 20% |
Acc (Simulated Dataset) | 62.17% | 54.96% | 58.88% | |
Acc (RadioML 2016.10A) | 80.63% | 69.75% | 70.10% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Guo, L.; Yan, J.; Tao, M.; Fu, X.; Lin, Y.; Gui, G. Automatic Modulation Classification Using Deep Residual Neural Network with Masked Modeling for Wireless Communications. Drones 2023, 7, 390. https://doi.org/10.3390/drones7060390
Peng Y, Guo L, Yan J, Tao M, Fu X, Lin Y, Gui G. Automatic Modulation Classification Using Deep Residual Neural Network with Masked Modeling for Wireless Communications. Drones. 2023; 7(6):390. https://doi.org/10.3390/drones7060390
Chicago/Turabian StylePeng, Yang, Lantu Guo, Jun Yan, Mengyuan Tao, Xue Fu, Yun Lin, and Guan Gui. 2023. "Automatic Modulation Classification Using Deep Residual Neural Network with Masked Modeling for Wireless Communications" Drones 7, no. 6: 390. https://doi.org/10.3390/drones7060390
APA StylePeng, Y., Guo, L., Yan, J., Tao, M., Fu, X., Lin, Y., & Gui, G. (2023). Automatic Modulation Classification Using Deep Residual Neural Network with Masked Modeling for Wireless Communications. Drones, 7(6), 390. https://doi.org/10.3390/drones7060390