The Second Derivative of the NDVI Time Series as an Estimator of Fresh Biomass: A Case Study of Eight Forage Associations Monitored via UAS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. UAS and Direct Measurements
2.2.1. UAS Imagery
2.2.2. Field: Fresh Biomass in Eight Fields
2.3. The WP* Kc,Tr Approach
2.4. Use of the NDVI Second Derivative to Retrieve the Temporal Thresholds
2.5. Scalability
- (a)
- At the point scale, the precise location of the ground measurements was used. The NDVI of each date was extracted at each location (two replicates per field) by applying a buffer of the same size as the fenced area used in the field sampling. For each association, the two NDVI values were averaged.
- (b)
- At the field scale, the NDVI was averaged for each whole experimental plot. The aim of the idea to use an averaged value for an area of 400 m2 was to assess the robustness of the approach when using satellite scales, i.e., to estimate biomass production at the regional scale.
2.6. Validation of the Approach
3. Results
3.1. Exploratory Analysis of the Fresh Biomass–NDVI Relationships
3.2. Results of and
3.3. Fresh Biomass Estimation: Regression and Errors
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shem, G.; Kelonye, F. Prediction of Crop Yields under a Changing Climate. In Agrometeorology; Swaroop, R., Ed.; IntechOpen: London, UK, 2021; ISBN 978-1-83881-175-4. [Google Scholar]
- Ghanbari-Bonjar, A.; Lee, H.C. Intercropped Wheat (Triticum aestivum L.) and Bean (Vicia faba L.) as a Whole-Crop Forage: Effect of Harvest Time on Forage Yield and Quality. Grass Forage Sci. 2003, 58, 28–36. [Google Scholar] [CrossRef]
- Eskandari, H.; Ghanbari, A.; Javanmard, A. Intercropping of Cereals and Legumes for Forage Production. Not. Sci. Biol. 2009, 1, 7–13. [Google Scholar] [CrossRef]
- Willey, R.W. Intercropping: Its Importance and Research Needs. Part 1, Competition and Yield Advantages; Field Crop Abstract: Washinton, DC, USA, 1979; Volume 32. [Google Scholar]
- Belel, M.D.; Halim, R.A.; Rafii, M.Y.; Saud, H.M. Intercropping of Corn with Some Selected Legumes for Improved Forage Production: A Review. J. Agric. Sci. 2014, 6, p48. [Google Scholar] [CrossRef]
- FAO Handbook on Crop Statistics: Improving Methods for Measuring Crop Area, Production and Yield; Pasetto, L. (Ed.) FAO Statistics Division (ESS): Rome, Italy, 2018. [Google Scholar]
- Doorenbos, J.; Pruitt, W.O. Crop Water Requirements; Agriculture Organization of the UNited Nations: Rome, Italy, 1977; ISBN 92-5-100279-7. [Google Scholar]
- Doorenbos, J.; Kassam, A.H. Yield Response to Water; Land and Water Development Division, Food and Agriculture Organization of the UNited Nations: Rome, Italy, 1979; ISBN 92-5-100744-6. [Google Scholar]
- Steduto, P.; Hsiao, T.C.; Fereres, E.; Raes, D. Crop Yield Response to Water; Food and Agriculture Organization of the United Nations (FAO), Ed.; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2012; ISBN 978-92-5-107274-5. [Google Scholar]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: II. Main Algorithms and Software Description. Agron. J. 2009, 101, 438–447. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote Sensing for Agricultural Applications: A Meta-Review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- FAO. Book I: Understanding AquaCrop; Raes, D., Ed.; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2017; ISBN 9789251093900. [Google Scholar]
- Biazin, B.; Wondatir, S.; Tilahun, G.; Asaro, N.; Amede, T. Using AquaCrop as a Decision-Support Tool for Small-Scale Irrigation Systems Was Dictated by the Institutional and Market Incentives in Ethiopia. Front. Water 2021, 3, 96. [Google Scholar] [CrossRef]
- Greaves, G.E.; Wang, Y.-M.; Hess, T.; Knox, J. Assessment of FAO AquaCrop Model for Simulating Maize Growth and Productivity under Deficit Irrigation in a Tropical Environment. Water 2016, 8, 557. [Google Scholar] [CrossRef]
- Heng, L.K.; Hsiao, T.; Evett, S.; Howell, T.; Steduto, P. Validating the FAO AquaCrop Model for Irrigated and Water Deficient Field Maize. Agron. J. 2009, 101, 488–498. [Google Scholar] [CrossRef]
- Han, C.; Zhang, B.; Chen, H.; Wei, Z.; Liu, Y. Spatially Distributed Crop Model Based on Remote Sensing. Agric. Water Manag. 2019, 218, 165–173. [Google Scholar] [CrossRef]
- Lorite, I.J.; García-Vila, M.; Santos, C.; Ruiz-Ramos, M.; Fereres, E. AquaData and AquaGIS: Two Computer Utilities for Temporal and Spatial Simulations of Water-Limited Yield with AquaCrop. Comput. Electron. Agric. 2013, 96, 227–237. [Google Scholar] [CrossRef]
- Salman, M.; García-Vila, M.; Fereres, E.; Raes, D.; Steduto, P. The AquaCrop Model: Enhancing Crop Water Productivity. Ten Years of Development, Dissemination and Implementation 2009–2019; Food and Agriculture Organization of the United Nations (FAO), Ed.; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2021; ISBN 9789251352229. [Google Scholar]
- Johnson, D.M.; Rosales, A.; Mueller, R.; Reynolds, C.; Frantz, R.; Anyamba, A.; Pak, E.; Tucker, C. USA Crop Yield Estimation with MODIS NDVI: Are Remotely Sensed Models Better than Simple Trend Analyses? Remote Sens. 2021, 13, 4227. [Google Scholar] [CrossRef]
- Shammi, S.A.; Meng, Q. Use Time Series NDVI and EVI to Develop Dynamic Crop Growth Metrics for Yield Modeling. Ecol. Indic. 2021, 121, 107124. [Google Scholar] [CrossRef]
- Lischeid, G.; Webber, H.; Sommer, M.; Nendel, C.; Ewert, F. Machine Learning in Crop Yield Modelling: A Powerful Tool, but No Surrogate for Science. Agric. For. Meteorol. 2022, 312, 108698. [Google Scholar] [CrossRef]
- van Klompenburg, T.; Kassahun, A.; Catal, C. Crop Yield Prediction Using Machine Learning: A Systematic Literature Review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Xu, H.; Twine, T.E.; Yang, X. Evaluating Remotely Sensed Phenological Metrics in a Dynamic Ecosystem Model. Remote Sens. 2014, 6, 4660–4686. [Google Scholar] [CrossRef]
- Löw, F.; Biradar, C.; Fliemann, E.; Lamers, J.P.A.; Conrad, C. Assessing Gaps in Irrigated Agricultural Productivity through Satellite Earth Observations—A Case Study of the Fergana Valley, Central Asia. Int. J. Appl. Earth Obs. Geoinf. 2017, 59, 118–134. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Q.; Zhou, J.; Zhang, G.; Chen, C.; Wang, J. Assimilating Remote Sensing Information into a Coupled Hydrology-Crop Growth Model to Estimate Regional Maize Yield in Arid Regions. Ecol. Modell. 2014, 291, 15–27. [Google Scholar] [CrossRef]
- Delécolle, R.; Maas, S.J.; Guérif, M.; Baret, F. Remote Sensing and Crop Production Models: Present Trends. ISPRS J. Photogramm. Remote Sens. 1992, 47, 145–161. [Google Scholar] [CrossRef]
- Jin, X.; Kumar, L.; Li, Z.; Xu, X.; Yang, G.; Wang, J.; Mutanga, O.; Baghdadi, N.; Atzberger, C.; Thenkabail, P.S. Estimation of Winter Wheat Biomass and Yield by Combining the AquaCrop Model and Field Hyperspectral Data. Remote Sens. 2016, 8, 972. [Google Scholar] [CrossRef]
- Abi Saab, M.T.; El Alam, R.; Jomaa, I.; Skaf, S.; Fahed, S.; Albrizio, R.; Todorovic, M. Coupling Remote Sensing Data and AquaCrop Model for Simulation of Winter Wheat Growth under Rainfed and Irrigated Conditions in a Mediterranean Environment. Agronomy 2021, 11, 2265. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Steduto, P. The Water Productivity Score (WPS) at Global and Regional Level: Methodology and First Results from Remote Sensing Measurements of Wheat, Rice and Maize. Sci. Total Environ. 2017, 575, 595–611. [Google Scholar] [CrossRef] [PubMed]
- Campos, I.; González-Gómez, L.; Villodre, J.; Calera, M.; Campoy, J.; Jiménez, N.; Plaza, C.; Sánchez-Prieto, S.; Calera, A. Mapping Within-Field Variability in Wheat Yield and Biomass Using Remote Sensing Vegetation Indices. Precis. Agric. 2019, 20, 214–236. [Google Scholar] [CrossRef]
- Kim, D.; Kaluarachchi, J. Validating FAO AquaCrop Using Landsat Images and Regional Crop Information. Agric. Water Manag. 2015, 149, 143–155. [Google Scholar] [CrossRef]
- Tenreiro, T.R.; García-Vila, M.; Gómez, J.A.; Jiménez-Berni, J.A.; Fereres, E. Using NDVI for the Assessment of Canopy Cover in Agricultural Crops within Modelling Research. Comput. Electron. Agric. 2021, 182, 106038. [Google Scholar] [CrossRef]
- Trombetta, A.; Iacobellis, V.; Tarantino, E.; Gentile, F. Calibration of the AquaCrop Model for Winter Wheat Using MODIS LAI Images. Agric. Water Manag. 2016, 164, 304–316. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Shell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; Texas A & M University, Remote Sensing Center: College Station, TX, USA, 1974. [Google Scholar]
- Hassan, M.A.; Yang, M.; Rasheed, A.; Yang, G.; Reynolds, M.; Xia, X.; Xiao, Y.; He, Z. A Rapid Monitoring of NDVI across the Wheat Growth Cycle for Grain Yield Prediction Using a Multi-Spectral UAV Platform. Plant Sci. 2019, 282, 95–103. [Google Scholar] [CrossRef]
- Duan, B.; Fang, S.; Zhu, R.; Wu, X.; Wang, S.; Gong, Y.; Peng, Y. Remote Estimation of Rice Yield with Unmanned Aerial Vehicle (Uav) Data and Spectral Mixture Analysis. Front. Plant Sci. 2019, 10, 204. [Google Scholar] [CrossRef]
- Kyratzis, A.; Skarlatos, D.; Fotopoulos, V.; Vamvakousis, V.; Katsiotis, A. Investigating Correlation among NDVI Index Derived by Unmanned Aerial Vehicle Photography and Grain Yield under Late Drought Stress Conditions. Procedia Environ. Sci. 2015, 29, 225–226. [Google Scholar] [CrossRef]
- Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-Comparison of Four Models for Smoothing Satellite Sensor Time-Series Data to Estimate Vegetation Phenology. Remote Sens. Environ. 2012, 123, 400–417. [Google Scholar] [CrossRef]
- White, M.A.; Nemani, R.R. Real-Time Monitoring and Short-Term Forecasting of Land Surface Phenology. Remote Sens. Environ. 2006, 104, 43–49. [Google Scholar] [CrossRef]
- Marti, J.; Bort, J.; Slafer, G.A.; Araus, J.L. Can Wheat Yield Be Assessed by Early Measurements of Normalized Difference Vegetation Index? Ann. Appl. Biol. 2007, 150, 253–257. [Google Scholar] [CrossRef]
- Seo, B.; Lee, J.; Lee, K.D.; Hong, S.; Kang, S. Improving Remotely-Sensed Crop Monitoring by NDVI-Based Crop Phenology Estimators for Corn and Soybeans in Iowa and Illinois, USA. Field Crop. Res. 2019, 238, 113–128. [Google Scholar] [CrossRef]
- Misra, G.; Buras, A.; Menzel, A.; Henebry, G.M.; Hoffman, F.M.; Kumar, J.; Zhang, X.; Moreno, J.; Atzberger, C.; Thenkabail, P.S. Effects of Different Methods on the Comparison between Land Surface and Ground Phenology—A Methodological Case Study from South-Western Germany. Remote Sens. 2016, 8, 753. [Google Scholar] [CrossRef]
- Tan, B.; Morisette, J.T.; Wolfe, R.E.; Gao, F.; Ederer, G.A.; Nightingale, J.; Pedelty, J.A. An Enhanced TIMESAT Algorithm for Estimating Vegetation Phenology Metrics from MODIS Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 361–371. [Google Scholar] [CrossRef]
- Plaza, J.; Criado, M.; Sánchez, N.; Pérez-Sánchez, R.; Palacios, C.; Charfolé, F. UAV Multispectral Imaging Potential to Monitor and Predict Agronomic Characteristics of Different Forage Associations. Agronomy 2021, 11, 1697. [Google Scholar] [CrossRef]
- Chandel, A.K.; Khot, L.R.; Yu, L.X. Alfalfa (Medicago Sativa L.) Crop Vigor and Yield Characterization Using High-Resolution Aerial Multispectral and Thermal Infrared Imaging Technique. Comput. Electron. Agric. 2021, 182, 105999. [Google Scholar] [CrossRef]
- Plaza, J.; Sánchez, N.; García-Ariza, C.; Pérez-Sánchez, R.; Charfolé, F.; Caminero-Saldaña, C. Classification of Airborne Multispectral Imagery to Quantify Common Vole Impacts on an Agricultural Field. Pest Manag. Sci. 2022, 78, 2316–2323. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Chen, J.; Chen, Y.; Li, J.; Yan, G.; Zhang, X. Analysis of NDVI and Scaled Difference Vegetation Index Retrievals of Vegetation Fraction. Remote Sens. Environ. 2006, 101, 366–378. [Google Scholar] [CrossRef]
- Kustas, W.P.; Schmugge, T.J.; Humes, K.S.; Jackson, T.J.; Parry, R.; Weltz, M.A.; Moran, M.S. Relationships between Evaporative Fraction and Remotely Sensed Vegetation Index and Microwave Brightness Temperature for Semiarid Rangelands. J. Appl. Meteorol. Climatol. 1993, 32, 1781–1790. [Google Scholar] [CrossRef]
- Willmott, C.J. Some Comments on the Evaluation of Model Performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef]
- Calera, A.; González-Piqueras, J.; Melia, J. Monitoring Barley and Corn Growth from Remote Sensing Data at Field Scale. Int. J. Remote Sens. 2004, 25, 97–109. [Google Scholar] [CrossRef]
- Sánchez, N.; Martínez-Fernández, J.; González-Piqueras, J.; González-Dugo, M.P.; Baroncini-Turrichia, G.; Torres, E.; Calera, A.; Pérez-Gutiérrez, C. Water Balance at Plot Scale for Soil Moisture Estimation Using Vegetation Parameters. Agric. For. Meteorol. 2012, 166–167, 1–9. [Google Scholar] [CrossRef]
- Wang, J.; Rich, P.M.; Price, K.P.; Dean Kettle, W. Relations between NDVI, Grassland Production, and Crop Yield in the Central Great Plains. Geocarto Int. 2005, 20, 5–11. [Google Scholar] [CrossRef]
- Yang, L.; Wylie, B.K.; Tieszen, L.L.; Reed, B.C. An Analysis of Relationships among Climate Forcing and Time-Integrated NDVI of Grasslands over the U.S. Northern and Central Great Plains. Remote Sens. Environ. 1998, 65, 25–37. [Google Scholar] [CrossRef]
- Reed, B.C.; Brown, J.F.; VanderZee, D.; Loveland, T.R.; Merchant, J.W.; Ohlen, D.O. Measuring Phenological Variability from Satellite Imagery. J. Veg. Sci. 1994, 5, 703–714. [Google Scholar] [CrossRef]
- Lobell, D.B.; Ortiz-Monasterio, J.I.; Sibley, A.M.; Sohu, V.S. Satellite Detection of Earlier Wheat Sowing in India and Implications for Yield Trends. Agric. Syst. 2013, 115, 137–143. [Google Scholar] [CrossRef]
- Mkhabela, M.S.; Bullock, P.; Raj, S.; Wang, S.; Yang, Y. Crop Yield Forecasting on the Canadian Prairies Using MODIS NDVI Data. Agric. For. Meteorol. 2011, 151, 385–393. [Google Scholar] [CrossRef]
- Labus, M.P.; Nielsen, G.A.; Lawrence, R.L.; Engel, R.; Long, D.S. Wheat Yield Estimates Using Multi-Temporal NDVI Satellite Imagery. Int. J. Remote Sens. 2002, 23, 4169–4180. [Google Scholar] [CrossRef]
- Doraiswamy, P.C.; Cook, P.W. Spring Wheat Yield Assessment Using NOAA AVHRR Data. Can. J. Remote Sens. 1995, 21, 43–51. [Google Scholar] [CrossRef]
- McBratney, A.; Whelan, B.; Ancev, T.; Bouma, J. Future Directions of Precision Agriculture. Precis. Agric. 2005, 6, 7–23. [Google Scholar] [CrossRef]
- Sekhar Panda, S.; Ames, D.P.; Panigrahi, S. Application of Vegetation Indices for Agricultural Crop Yield Prediction Using Neural Network Techniques. Remote Sens. 2010, 2, 673–696. [Google Scholar] [CrossRef]
- Hernández, A.J.; Pastor, J.; Benayas, J.M.R. Forage Production under Duboptimal Conditions—An Overview of Drought Problems in Mediterranean-Type Ecosystems. In Grassland and Society, Proceedings of the 15th General Meeting of the European Grassland Federation, Wageningen, The Netherlands, 6–9 June 1994; Mannetje, L., Frame, J., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 1994; pp. 539–548. [Google Scholar]
- Pérez-Corona, M.E.; Vâzquez-de-Aldana, B.R.; Criado, B.G.; Ciudad, A.G. Variations in Nutritional Quality and Biomass Production of Semiarid Grasslands. J. Range Manag. 1998, 51, 570–576. [Google Scholar] [CrossRef]
- Ajith, K.; Geethalakshmi, V.; Ragunath, K.P.; Pazhanivelan, S.; Dheebakaran, G. Rice Yield Prediction Using MODIS—NDVI (MOD13Q1) and Land Based Observations. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2277–2293. [Google Scholar] [CrossRef]
- Benedetti, R.; Rossini, P. On the Use of NDVI Profiles as a Tool for Agricultural Statistics: The Case Study of Wheat Yield Estimate and Forecast in Emilia Romagna. Remote Sens. Environ. 1993, 45, 311–326. [Google Scholar] [CrossRef]
- Battude, M.; Al Bitar, A.; Morin, D.; Cros, J.; Huc, M.; Marais Sicre, C.; Le Dantec, V.; Demarez, V. Estimating Maize Biomass and Yield over Large Areas Using High Spatial and Temporal Resolution Sentinel-2 like Remote Sensing Data. Remote Sens. Environ. 2016, 184, 668–681. [Google Scholar] [CrossRef]
- Claverie, M.; Demarez, V.; Duchemin, B.; Hagolle, O.; Ducrot, D.; Marais-Sicre, C.; Dejoux, J.F.; Huc, M.; Keravec, P.; Béziat, P.; et al. Maize and Sunflower Biomass Estimation in Southwest France Using High Spatial and Temporal Resolution Remote Sensing Data. Remote Sens. Environ. 2012, 124, 844–857. [Google Scholar] [CrossRef]
- Ji, Y.; Chen, Z.; Cheng, Q.; Liu, R.; Li, M.; Yan, X.; Li, G.; Wang, D.; Fu, L.; Ma, Y.; et al. Estimation of Plant Height and Yield Based on UAV Imagery in Faba Bean (Vicia faba L.). Plant Methods 2022, 18, 1–13. [Google Scholar] [CrossRef]
- Blatchford, M.L.; Mannaerts, C.M.; Zeng, Y.; Nouri, H.; Karimi, P. Status of Accuracy in Remotely Sensed and In-Situ Agricultural Water Productivity Estimates: A Review. Remote Sens. Environ. 2019, 234, 111413. [Google Scholar] [CrossRef]
- Babar, M.A.; Reynolds, M.P.; Van Ginkel, M.; Klatt, A.R.; Raun, W.R.; Stone, M.L. Spectral Reflectance Indices as a Potential Indirect Selection Criteria for Wheat Yield under Irrigation. Crop Sci. 2006, 46, 578–588. [Google Scholar] [CrossRef]
- Janoušek, J.; Jambor, V.; Marcoň, P.; Dohnal, P.; Synková, H.; Fiala, P. Using UAV-Based Photogrammetry to Obtain Correlation between the Vegetation Indices and Chemical Analysis of Agricultural Crops. Remote Sens. 2021, 13, 1878. [Google Scholar] [CrossRef]
Parameter | October 2019–June 2020 |
---|---|
Mean temperature (°C) | 9.5 |
Total precipitation (mm) | 380.2 |
Spring precipitation (mm) | 121.3 |
Average relative moisture (%) | 81.1 |
Total solar radiation (MJ/m2) | 3893.1 |
Fresh Biomass (gr/m2) | VBT | VT | VR | VO | PBT | PT | PR | PO |
---|---|---|---|---|---|---|---|---|
2/4/2020 | 90.0 | 58.0 | 122.9 | 120.2 | 70.9 | 84.1 | 100.2 | 73.8 |
2/26/2020 | 309.6 | 257.3 | 228.6 | 236.1 | 118.9 | 121.8 | 268.9 | 237.6 |
3/26/2020 | 608.0 | 600.0 | 468.0 | 360.0 | 192.0 | 344.0 | 396.0 | 580.0 |
4/14/2020 | 650.0 | 580.0 | 572.0 | 608.0 | 324.0 | 380.0 | 232.0 | 580.0 |
5/2/2020 | 692.0 | 704.0 | 808.0 | 724.0 | 488.0 | 520.0 | 440.0 | 412.0 |
5/17/2020 | 636.0 | 883.0 | 783.5 | 772.0 | 480.0 | 596.0 | 621.5 | 344.0 |
5/29/2020 | 132.0 | 140.0 | 216.0 | 176.0 | 132.0 | 96.0 | 132.0 | 28.0 |
Fresh Biomass vs. NDVI (R) | VBT | VT | VR | VO | PBT | PT | PR | PO |
---|---|---|---|---|---|---|---|---|
At point scale | 0.79 * | 0.78 * | 0.72 | 0.85 * | 0.77 * | 0.88 ** | 0.70 | 0.35 |
At field scale | 0.82 * | 0.76 * | 0.82 * | 0.80 * | 0.85 * | 0.83 * | 0.72 | 0.53 |
Fresh Biomass vs. NDVI (R) | 2/4/20 | 2/26/20 | 3/26/20 | 4/14/20 | 5/2/20 | 5/17/20 | 5/29/20 |
---|---|---|---|---|---|---|---|
At point scale | 0.82 * | 0.73 * | 0.46 | 0.77 * | 0.97 ** | 0.82 * | 0.74 * |
At field scale | 0.51 | 0.70 | 0.72 * | 0.87 ** | 0.91 ** | 0.88 ** | 0.72 * |
Fresh Biomass (kg/ha) | VBT | VT | VR | VO | PBT | PT | PR | PO |
---|---|---|---|---|---|---|---|---|
At point scale | 7144.4 | 7369.7 | 7369.5 | 7294.3 | 5974.1 | 4596.5 | 6005.4 | 4235.9 |
At field scale | 5381.6 | 5179.2 | 5196.9 | 5048.9 | 4234.1 | 4342.2 | 4204.4 | 4329.7 |
Fresh Biomass at Point Scale (kg/ha) | R2 | MAB (kg/ha) | MAB (%) | RMSD (kg/ha) | AI |
---|---|---|---|---|---|
4/14/2020 | 0.17 | 1732.3 | 35.3 | 1975.2 | 0.58 |
5/2/2020 | 0.73 | 592.2 | 9.9 | 776.1 | 0.90 |
5/17/2020 | 0.69 | 834.9 | 13.1 | 939.5 | 0.88 |
5/29/2020 | 0.73 | 4933.7 | 375.2 | 4997.7 | 0.14 |
Fresh Biomass at Field Scale (kg/ha) | R2 | MAB (kga/ha) | MAB (%) | RMSD (kg/ha) | AI |
---|---|---|---|---|---|
4/14/2020 | 0.66 | 1023.1 | 20.8 | 1116.2 | 0.67 |
5/2/2020 | 0.85 | 1297.8 | 21.7 | 1588.1 | 0.64 |
5/17/2020 | 0.51 | 1877.8 | 29.4 | 2125.8 | 0.55 |
5/29/2020 | 0.34 | 3424.6 | 260.4 | 3454.5 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez, N.; Plaza, J.; Criado, M.; Pérez-Sánchez, R.; Gómez-Sánchez, M.Á.; Morales-Corts, M.R.; Palacios, C. The Second Derivative of the NDVI Time Series as an Estimator of Fresh Biomass: A Case Study of Eight Forage Associations Monitored via UAS. Drones 2023, 7, 347. https://doi.org/10.3390/drones7060347
Sánchez N, Plaza J, Criado M, Pérez-Sánchez R, Gómez-Sánchez MÁ, Morales-Corts MR, Palacios C. The Second Derivative of the NDVI Time Series as an Estimator of Fresh Biomass: A Case Study of Eight Forage Associations Monitored via UAS. Drones. 2023; 7(6):347. https://doi.org/10.3390/drones7060347
Chicago/Turabian StyleSánchez, Nilda, Javier Plaza, Marco Criado, Rodrigo Pérez-Sánchez, M. Ángeles Gómez-Sánchez, M. Remedios Morales-Corts, and Carlos Palacios. 2023. "The Second Derivative of the NDVI Time Series as an Estimator of Fresh Biomass: A Case Study of Eight Forage Associations Monitored via UAS" Drones 7, no. 6: 347. https://doi.org/10.3390/drones7060347
APA StyleSánchez, N., Plaza, J., Criado, M., Pérez-Sánchez, R., Gómez-Sánchez, M. Á., Morales-Corts, M. R., & Palacios, C. (2023). The Second Derivative of the NDVI Time Series as an Estimator of Fresh Biomass: A Case Study of Eight Forage Associations Monitored via UAS. Drones, 7(6), 347. https://doi.org/10.3390/drones7060347