High-Precision Mapping of Soil Organic Matter Based on UAV Imagery Using Machine Learning Algorithms
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Data
2.2.1. Acquisition and Processing of Soil Data
2.2.2. Acquisition and Processing of Remote Sensing Data
2.3. Methods
2.3.1. Construction of Spectral Characteristic Indices
2.3.2. Selection of Spectral Characteristic Indices
2.3.3. Inversion Model of SOM
2.3.4. Accuracy Evaluation
3. Results
3.1. Selection of the Best Spectral Index Combination
3.1.1. Band Correlations
3.1.2. Performance of the Ten Newly Constructed Soil Indices
3.2. Construction of Inversion Model of SOM
3.3. The Final Map of SOM
4. Discussion
4.1. Necessity of UAV Studies for SOM
4.2. SOM Index Sensitivity
4.3. SOM Model Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Adeline, K.; Gomez, C.; Gorretta, N.; Roger, J.M. Predictive ability of soil properties to spectral degradation from laboratory Vis-NIR spectroscopy data. Geoderma 2017, 288, 143–153. [Google Scholar] [CrossRef]
- Watt, M.S.; Palmer, D.J. Use of regression kriging to develop a Carbon:Nitrogen ratio surface for New Zealand. Geoderma 2012, 184, 49–57. [Google Scholar] [CrossRef]
- Mohanty, B.P. Soil Hydraulic Property Estimation Using Remote Sensing: A Review. Vadose Zone J. 2013, 12, 1–9. [Google Scholar] [CrossRef]
- Gupta, R.K. Comparative study of AVHRR ratio vegetation index and normalized difference vegetation index in district level agricultural monitoring. Remote Sens. 1993, 14, 53–73. [Google Scholar] [CrossRef]
- Bolton, D.K.; Friedl, M.A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. For. Meteorol. 2013, 173, 74–84. [Google Scholar] [CrossRef]
- Chang, A.; Yeom, J.; Jung, J.; Landivar, J. Comparison of Canopy Shape and Vegetation Indices of Citrus Trees Derived from UAV Multispectral Images for Characterization of Citrus Greening Disease. Remote Sens. 2020, 12, 4122. [Google Scholar] [CrossRef]
- Peng, J.; Biswas, A.; Jiang, Q.S.; Zhao, R.Y.; Hu, J.; Hu, B.; Shi, Z. Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China. Geoderma 2019, 337, 1309–1319. [Google Scholar] [CrossRef]
- Dou, X.; Wang, X.; Liu, H.; Zhang, X.; Cui, Y. Prediction of soil organic matter using multi-temporal satellite images in the Songnen Plain, China. Geoderma 2019, 356, 113896. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Žižala, D.; Saberioon, M.; Borůvka, L. Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sens. Environ. 2018, 218, 89–103. [Google Scholar] [CrossRef]
- Mirzaee, S.; Ghorbani-Dashtaki, S.; Mohammadi, J.; Asadi, H.; Asadzadeh, F. Spatial variability of soil organic matter using remote sensing data. Catena 2016, 145, 118–127. [Google Scholar] [CrossRef]
- Forkuor, G.; Hounkpatin, O.; Welp, G.; Thiel, M. High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models. PLoS ONE 2017, 12, e170478. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Dou, X.; Xie, Y.; Liu, H.; Pan, Y. Remote sensing inversion model of soil organic matter in farmland by introducing temporal information. Trans. Chin. Soc. Agric. Eng. 2018, 34, 143–150. [Google Scholar]
- Zhai, M. Inversion of organic matter content in wetland soil based on Landsat 8 remote sensing image. J. Vis. Commun. Image Represent. 2019, 64, 102641–102645. [Google Scholar] [CrossRef]
- Morellos, A.; Pantazi, X.E.; Moshou, D.; Alexandridis, T.; Whetton, R.; Tziotzios, G.; Wiebensohn, J.; Bill, R.; Mouazen, A.M. Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosyst. Eng. 2016, 152, 104–116. [Google Scholar] [CrossRef]
- Martínez-España, R.; Bueno-Crespo, A.; Soto, J.; Janik, L.J.; Soriano-Disla, J.M. Developing an intelligent system for the prediction of soil properties with a portable mid-infrared instrument. Biosyst. Eng. 2018, 177, 101–108. [Google Scholar] [CrossRef]
- Mara, M.N.; Helmy Nursyahid, A.; Setyawan, T.A.; Sriyanto, A. Adjustment Pattern of pH Using Random Forest Regressor for Crop Modelling of NFT Hydroponic Lettuce. J. Phys. Conf. Ser. 2021, 1863, 12075. [Google Scholar] [CrossRef]
- Jia, S.; Li, H.; Wang, Y.; Tong, R.; Li, Q. Hyperspectral Imaging Analysis for the Classification of Soil Types and the Determination of Soil Total Nitrogen. Sensors 2017, 17, 2252. [Google Scholar] [CrossRef]
- Shan, J.; Zhao, J.; Liu, L.; Zhang, Y.; Wang, X. A novel way to rapidly monitor microplastics in soil by hyperspectral imaging technology and chemometrics. Environ. Pollut. 2018, 238, 121–129. [Google Scholar] [CrossRef]
- Stagakis, S.; Markos, N.; Sykioti, O.; Kyparissis, A. Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: An application on a Phlomis fruticosa Mediterranean ecosystem using multiangular CHRIS/PROBA observations. Remote Sens. Environ. 2010, 114, 977–994. [Google Scholar] [CrossRef]
- Stavrakoudis, D.G.; Dragozi, E.; Gitas, I.Z.; Karydas, C.G. Decision Fusion Based on Hyperspectral and Multispectral Satellite Imagery for Accurate Forest Species Mapping. Remote Sens. 2014, 6, 6897–6928. [Google Scholar] [CrossRef]
- Gevaert, C.M.; Suomalainen, J.; Tang, J.; Kooistra, L. Generation of Spectral-Temporal Response Surfaces by Combining Multispectral Satellite and Hyperspectral UAV Imagery for Precision Agriculture Applications. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3140–3146. [Google Scholar] [CrossRef]
- Bindlish, R.; Barros, A.P. Subpixel variability of remotely sensed soil moisture: An inter-comparison study of SAR and ESTAR. IEEE Trans. Geosci. Remote Sens. 2002, 40, 326–337. [Google Scholar] [CrossRef]
- Hosseini, R.; Newlands, N.K.; Dean, C.B.; Takemura, A. Statistical Modeling of Soil Moisture, Integrating Satellite Remote-Sensing (SAR) and Ground-Based Data. Remote Sens. 2015, 7, 2752–2780. [Google Scholar] [CrossRef]
- Yuzugullu, O.; Lorenz, F.; Frohlich, P.; Liebisch, F. Understanding Fields by Remote Sensing: Soil Zoning and Property Mapping. Remote Sens. 2020, 12, 1116. [Google Scholar] [CrossRef]
- Garosi, Y.; Ayoubi, S.; Nussbaum, M.; Sheklabadi, M.; Nael, M.; Kimiaee, I. Use of the time series and multi-temporal features of Sentinel-1/2 satellite imagery to predict soil inorganic and organic carbon in a low-relief area with a semi-arid environment. Int. J. Remote Sens. 2022, 43, 6856–6880. [Google Scholar] [CrossRef]
- Soriano-Disla, J.M.; Janik, L.J.; Allen, D.J.; Mclaughlin, M.J. Evaluation of the performance of portable visible-infrared instruments for the prediction of soil properties. Biosyst. Eng. 2017, 161, 24–36. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L.; Aldakheel, Y.Y. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region. Geoderma 2014, s230–231, 1–8. [Google Scholar] [CrossRef]
- Scudiero, E.; Skaggs, T.H.; Corwin, D.L. Regional scale soil salinity evaluation using Landsat 7, western San Joaquin Valley, California, USA. Geoderma Reg. 2014, 2, 82–90. [Google Scholar] [CrossRef]
- Mashimbye, Z.E.; Cho, M.A.; Nell, J.P.; Clercq, W.; Niekerk, A.V.; Turner, D.P. Model-Based Integrated Methods for Quantitative Estimation of Soil Salinity from Hyperspectral Remote Sensing Data: A Case Study of Selected South African Soils. Pedosphere 2012, 22, 640–649. [Google Scholar] [CrossRef]
- Araújo, S.R.; Wetterlind, J.; Demattê, J.; Stenberg, B. Improving the prediction performance of a large tropical vis-NIR spectroscopic soil library from Brazil by clustering into smaller subsets or use of data mining calibration techniques. Eur. J. Soil Sci. 2014, 65, 718–729. [Google Scholar] [CrossRef]
- Takata, Y.; Funakawa, S.; Akshalov, K.; Ishida, N.; Kosaki, T. Regional evaluation of the spatio-temporal variation in soil organic carbon dynamics for rainfed cereal farming in northern Kazakhstan. Soil Sci. Plant Nutr. 2008, 5, 794–806. [Google Scholar] [CrossRef]
- Zhang, J. Research on the Prediction of Several Soil Properties in Heihe River Basin Based on Remote Sensing Images. Sustainability 2021, 13, 13930. [Google Scholar]
- Song, P. Detection of Aquatic Plants Using Multispectral UAV Imagery and Vegetation Index. Remote Sens. 2020, 12, 387. [Google Scholar] [CrossRef]
- Xu, Y.P.; Shrestha, V.; Piasecki, C.; Wolfe, B.; Hamilton, L.; Millwood, R.J.; Mazarei, M.; Stewart, C.N. Sustainability Trait Modeling of Field-Grown Switchgrass (Panicum virgatum) Using UAV-Based Imagery. Plants 2021, 10, 2726. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, P.; Crucil, G.; van Wesemael, B.; Limbourg, Q.; van Oost, K. Evaluating the capability of a UAV-borne spectrometer for soil organic carbon mapping in bare croplands. Land Degrad. Dev. 2021, 32, 4375–4389. [Google Scholar] [CrossRef]
- Heil, J.; Jorges, C.; Stumpe, B. Fine-Scale Mapping of Soil Organic Matter in Agricultural Soils Using UAVs and Machine Learning. Remote Sens. 2022, 14, 3349. [Google Scholar] [CrossRef]
- Yan, Y.; Yang, J.J.; Li, B.G.; Qin, C.Z.; Ji, W.J.; Xu, Y.; Huang, Y. High-Resolution Mapping of Soil Organic Matter at the Field Scale Using UAV Hyperspectral Images with a Small Calibration Dataset. Remote Sens. 2023, 15, 1433. [Google Scholar] [CrossRef]
- Zhu, C.M.; Ding, J.L.; Zhang, Z.P.; Wang, Z. Exploring the potential of UAV hyperspectral image for estimating soil salinity: Effects of optimal band combination algorithm and random forest. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2022, 279, 121416. [Google Scholar] [CrossRef]
- Xu, S. Temporal and Spatial Characteristics of the Change of Cultivated Land Resources in the Black Soil Region of Heilongjiang Province (China). Sustainability 2019, 11, 38. [Google Scholar] [CrossRef]
- Cao, D.; Feng, J.Z.; Bai, L.Y.; Xun, L.; Jing, H.T.; Sun, J.K.; Zhang, J.H. Delineating the rice crop activities in Northeast China through regional parametric synthesis using satellite remote sensing time-series data from 2000 to 2015. J. Integr. Agric. 2021, 20, 424–437. [Google Scholar] [CrossRef]
- Guo, R.; Zhu, X.F.; Zhang, C.; Cheng, C.X. Analysis of Change in Maize Plantation Distribution and Its Driving Factors in Heilongjiang Province, China. Remote Sens. 2022, 14, 3590. [Google Scholar] [CrossRef]
- Li, M.; Xi, X.; Xiao, G.; Cheng, H.; Yang, Z.; Zhou, G.; Ye, J.; Li, Z. National multi-purpose regional geochemical survey in China. J. Geochem. Explor. 2014, 139, 21–30. [Google Scholar] [CrossRef]
- Fern, R.R.; Foxley, E.A.; Bruno, A.; Morrison, M.L. Suitability of NDVI and OSAVI as estimators of green biomass and coverage in a semi-arid rangeland. Ecol. Indic. 2018, 94, 16–21. [Google Scholar] [CrossRef]
- Oszwald, J.; Bonis, A.; Bouzille, J.B.; Rapinel, S. Use of bi-Seasonal Landsat-8 Imagery for Mapping Marshland Plant Community Combinations at the Regional Scale. Wetl. J. Soc. Wetl. Sci. 2015, 35, 1043–1054. [Google Scholar]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, S.; Liu, H.; Wang, X.; Meng, L.; Ma, Y.; Guan, H. Soil Organic Matter Inversion in Agro-pastoral Ecotone of Northeast China. Soils 2022, 1, 184–190. [Google Scholar]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 2, 119–126. [Google Scholar] [CrossRef]
- Kazimova, F. Research of interrelation of RI index and colorimetric parameters of measurements of soil organic content. Agrar. Sci. J. 2020, 1, 13–16. [Google Scholar] [CrossRef]
- Elhag, M.; Gitas, I.; Othman, A.; Bahrawi, J.; Gikas, P. Assessment of Water Quality Parameters Using Temporal Remote Sensing Spectral Reflectance in Arid Environments, Saudi Arabia. Water 2019, 11, 556. [Google Scholar] [CrossRef]
- Motohka, T.; Nasahara, K.N.; Oguma, H.; Tsuchida, S. Applicability of Green-Red Vegetation Index for Remote Sensing of Vegetation Phenology. Remote Sens. 2010, 2, 2369–2387. [Google Scholar] [CrossRef]
- Ge, X.Y.; Ding, J.L.; Teng, D.X.; Wang, J.Z.; Huo, T.C.; Jin, X.; Wang, J.; He, B.; Han, L. Updated soil salinity with fine spatial resolution and high accuracy: The synergy of Sentinel-2 MSI, environmental covariates and hybrid machine learning approaches. Catena 2022, 212, 106054. [Google Scholar] [CrossRef]
- Han, L.; Liu, D.; Cheng, G.; Zhang, G.; Wang, L. Spatial distribution and genesis of salt on the saline playa at Qehan Lake, Inner Mongolia, China. Catena 2019, 177, 22–30. [Google Scholar] [CrossRef]
- Xie, L.F.; Wu, W.C.; Huang, X.L.; Ou, P.H.; Lin, Z.Y.; Wang, Z.; Song, Y.; Lang, T.; Huangfu, W.; Zhang, Y.; et al. Mining and Restoration Monitoring of Rare Earth Element (REE) Exploitation by New Remote Sensing Indicators in Southern Jiangxi, China. Remote Sens. 2020, 12, 3558. [Google Scholar] [CrossRef]
- Skianis, A.G.; Vaiopoulos, D.; Nikolakopoulos, K. A study of the performance of the MSR vegetation index, using probabilistic and geostatistical methods. Bull. Geol. Soc. Greece 2007, 40, 2048. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Q.; Huang, J.; Feng, H.K.; Wang, J.J.; Yang, G.J. Estimation of Potato Above Ground Biomass Based on UAV Multispectral Images. Spectrosc. Spectr. Anal. 2021, 41, 2549–2555. [Google Scholar]
- Qi, H.X.; Zhu, B.Y.; Wu, Z.Y.; Liang, Y.; Li, J.W.; Wang, L.; Chen, T.; Lan, Y.; Zhang, L. Estimation of Peanut Leaf Area Index from Unmanned Aerial Vehicle Multispectral Images. Sensors 2020, 20, 2732. [Google Scholar] [CrossRef] [PubMed]
- Li, X.H.; Ba, Y.X.; Zhang, M.Q.; Nong, M.L.; Yang, C.; Zhang, S. Sugarcane Nitrogen Concentration and Irrigation Level Prediction Based on UAV Multispectral Imagery. Sensors 2022, 22, 2711. [Google Scholar] [CrossRef] [PubMed]
- Richter, R.; Reu, B.; Wirth, C.; Doktor, D.; Vohland, M. The use of airborne hyperspectral data for tree species classification in a species-rich Central European forest area. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 464–474. [Google Scholar] [CrossRef]
- Karasiak, N.; Dejoux, J.F.; Fauvel, M.; Willm, J.; Monteil, C.; Sheeren, D. Statistical Stability and Spatial Instability in Mapping Forest Tree Species by Comparing 9 Years of Satellite Image Time Series. Remote Sens. 2019, 11, 2512. [Google Scholar] [CrossRef]
- Liu, W.J.; Jiang, Y.M.; Yang, Q.; Yang, H.; Li, Y.D.; Li, Z.; Mao, W.; Luo, Y.; Wang, X.; Tan, Z. Spatial distribution and stability mechanisms of soil organic carbon in a tropical montane rainforest. Ecol. Indic. 2021, 129, 107965. [Google Scholar] [CrossRef]
- Kingsley, J.; Afu, S.M.; Isong, I.A.; Chapman, P.A.; Kebonye, N.M.; Ayito, E.O. Estimation of Soil Organic Carbon Distribution by Geostatistical and Deterministic Interpolation Methods: A Case Study of The Southeastern Soils of Nigeria. Environ. Eng. Manag. J. 2021, 20, 1077–1085. [Google Scholar] [CrossRef]
- Maynard, J.J.; Dahlgren, R.A.; O’Geen, A.T. Soil carbon cycling and sequestration in a seasonally saturated wetland receiving agricultural runoff. Biogeosciences 2011, 8, 3391–3406. [Google Scholar] [CrossRef]
- Zheng, G.; Ryu, D.; Jiao, C.; Hong, C. Estimation of Organic Matter Content in Coastal Soil Using Reflectance Spectroscopy. Pedosphere 2016, 26, 130–136. [Google Scholar] [CrossRef]
- Sebastian, C.; Fabio, R.; Michaela, D.G.; Marco, D.; Mario, G. Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sens. 2015, 7, 4026–4047. [Google Scholar]
- Zou, H.; Zhang, H.H. On the adaptive elastic-net with a diverging number of parameters. Ann. Stat. 2009, 4, 1733–1751. [Google Scholar] [CrossRef]
- Tang, G.; Huang, Y.; Tian, K.; Song, X.; Min, S. A new spectral variable selection pattern using competitive adaptive reweighted sampling combined with successive projections algorithm. Analyst 2014, 139, 4894–4902. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, G. Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review. Sensors 2016, 16, 1308. [Google Scholar] [CrossRef]
Number of Samples | Minimum Value (g/kg) | Maximum Value (g/kg) | Mean Value (g/kg) | Standard Deviation (g/kg) |
---|---|---|---|---|
40 | 27.10 | 38.50 | 32.26 | 3.00 |
Bands | Central Wavelength (nm) | Resolution (cm) |
---|---|---|
B1—Blue | 443 | 1.5 |
B2—Green | 490 | 1.5 |
B3—Red | 560 | 1.5 |
B4—Red Edge | 665 | 1.5 |
B5—Near-Infrared | 705 | 1.5 |
Numbers | Spectral Indices | Formulas | References |
---|---|---|---|
(1)–(10) | Difference Vegetation Index (DVIij) | Bi − Bj | [33] |
(11)–(20) | Normalized Difference Vegetation Index (NDVIij) | (Bi − Bj)/(Bi + Bj) | [43] |
(21)–(26) | Brightness Index (BIij) | (Bi2 + Bj2)0.5 | [11] |
(27)–(30) | Brightness Index 2 (BIijk) | (Bi2 + Bj2 + Bk2)0.5/3 | [44] |
(31)–(40) | kij | (Bj − Bi)/(CWj − CWi) | [8] |
(41)–(50) | Tanijk | (kjk−kij)/(1 + kjk × kij) | [8] |
(51)–(70) | Ratio Vegetation Index (RVIij) | Bi/Bj | [4] |
(71)–(76) | Clumping Index (CIij) | Bj/Bi − 1 | [45] |
(77)–(81) | Band Reflectivity (Bi) | B1, B2, B3, B4, B5 | [46] |
(82)–(86) | Logarithm of Band Reflectivity (lgBi) | lgB1, lgB2, lgB3, lgB4, lgB5 | [46] |
(87)–(91) | Reciprocal of Band Reflectivity (REi) | 1/B1, 1/B2, 1/B3, 1/B4, 1/B5 | [46] |
(92) | Normalized Difference Rededge Index (NDREI) | (B5 − B4)/(B5 + B4) | [33] |
(93) | Modified Soil-Adjusted Vegetation Index (MSAVI) | (2 × B5 + 1 − ((2 × B5 + 1)2 − 8 × (B5 − B3))0.5)/2 | [47] |
(94) | Carbonate Index (Cal) | B4/B3 | [10] |
(95) | Redness Index (RI) | (B3 × B3)/(B4 × B4 × B4) | [48] |
(96) | Ratio Vegetation Index (RVI) | B5/B3 | [4] |
(97) | Green Normalized Difference Vegetation Index (GNDVI) | (B5 − B2)/(B5 + B2) | [49] |
(98) | Green-Red Vegetation Index (GRVI) | (B2 − B3)/(B2 + B3) | [50] |
(99) | Transformed Vegetation Index (TVI) | ((B5 − B3)/(B5 + B3) + 0.5)0.5 × 100 | [51] |
(100) | Enhanced Vegetation Index (EVI) | 2.5 × (B5 − B3)/(B5 + 6 × B3 − 7.5 × B1 + 1) | [51] |
(101) | Canopy Response Salinity Index (CRSI) | (B5 × B3 − B2 × B1)/(B5 × B3 + B2 × B1) | [52] |
(102) | Generalized Difference Vegetation Index (GDVI) | (B52 − B32)/(B52 + B32) | [53] |
(103) | Modified Simple Ratio (MSR) | ((B5/B3 − 1)/(B5/B3 + 1)0.5 | [54] |
(104) | Nonlinear Vegetation Index (NLI) | (B52 − B3)/(B52 + B3) | [55] |
(105) | Optimized Soil Background Adjust Index (OSAVI) | 1.16 × (B5 − B3)/(B5 + B3 + 0.16) | [43] |
(106) | Soil-Adjusted Vegetation Index (SAVI) | 1.5 × (B5 − B3)/(B5 + B3 + 0.5) | [53] |
(107) | Renormalized Difference Vegetation Index (RDVI) | (B5 − B3)/(B5 + B3)0.5 | [56] |
(108) | Simple Ratio Pigment Index (SRPI) | B1/B3 | [57] |
(109) | Renormalized Difference Vegetation Index 1 (RDVIrededge1) | ((B5 − B4)/(B5 + B4))0.5 | This paper |
(110) | Renormalized Difference Vegetation Index 2 (RDVIrededge2) | ((B4 − B3)/(B4 + B3))0.5 | This paper |
(111) | Generalized Difference Vegetation Index 1 (GDVIrededge1) | (B52 − B42)/(B52 + B42) | This paper |
(112) | Generalized Difference Vegetation Index 2 (GDVIrededge2) | (B42 − B32)/(B42 + B32) | This paper |
(113) | Nonlinear Vegetation Index 1 (NLIrededge1) | (B52 − B4)/(B52 + B4) | This paper |
(114) | Nonlinear Vegetation Index 2 (NLIrededge2) | (B42 − B3)/(B42 + B3) | This paper |
(115) | Canopy Response Salinity Index 1 (CRSIrededge1) | (B5 × B4 − B3 × B2)/(B5 × B4 + B3 × B2) | This paper |
(116) | Canopy Response Salinity Index 2 (CRSIrededge2) | (B5 × B4 − B3 × B1)/(B5 × B4 + B3 × B1) | This paper |
(117) | Modified Simple Ratio 1 (MSRrededge1) | ((B5/B4 − 1)/(B5/B4 + 1)0.5 | This paper |
(118) | Modified Simple Ratio 2 (MSRrededge2) | ((B4/B3 − 1)/(B4/B3 + 1)0.5 | This paper |
Numbers | Spectral Indices |
---|---|
1 | NLIrededge2 |
2 | GDVIrededge2 |
3 | RVI54 |
4 | RVI |
5 | NDREI |
6 | B5 |
7 | lgB1 |
8 | lgB3 |
9 | lgB4 |
Numbers | Regression Method | R2 | RMSE/% | MBE/% | RPIQ |
---|---|---|---|---|---|
1 | Random Forest Regression | 0.91 | 0.95 | 0.49 | 3.25 |
2 | Support Vector Regression | 0.67 | 1.09 | 0.91 | 3.16 |
3 | Elastic Net Regression | 0.70 | 1.09 | 0.94 | 3.10 |
4 | Bayesian Ridge Regression | 0.67 | 0.96 | 0.88 | 3.18 |
5 | Linear Regression | 0.75 | 1.04 | 0.83 | 2.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Xu, Y.; Gu, X.; Chen, T.; Sun, Q.; Zhang, S.; Pan, Y. High-Precision Mapping of Soil Organic Matter Based on UAV Imagery Using Machine Learning Algorithms. Drones 2023, 7, 290. https://doi.org/10.3390/drones7050290
Zhou J, Xu Y, Gu X, Chen T, Sun Q, Zhang S, Pan Y. High-Precision Mapping of Soil Organic Matter Based on UAV Imagery Using Machine Learning Algorithms. Drones. 2023; 7(5):290. https://doi.org/10.3390/drones7050290
Chicago/Turabian StyleZhou, Jingping, Yaping Xu, Xiaohe Gu, Tianen Chen, Qian Sun, Sen Zhang, and Yuchun Pan. 2023. "High-Precision Mapping of Soil Organic Matter Based on UAV Imagery Using Machine Learning Algorithms" Drones 7, no. 5: 290. https://doi.org/10.3390/drones7050290
APA StyleZhou, J., Xu, Y., Gu, X., Chen, T., Sun, Q., Zhang, S., & Pan, Y. (2023). High-Precision Mapping of Soil Organic Matter Based on UAV Imagery Using Machine Learning Algorithms. Drones, 7(5), 290. https://doi.org/10.3390/drones7050290