Trajectory Planning for Multiple UAVs and Hierarchical Collision Avoidance Based on Nonlinear Kalman Filters
Abstract
:1. Introduction
- For autonomous aerial docking and refueling, this technology is theorized to endure longer flight times and a better range than current technologies. In the docking mission of a UAV and a mothership, researchers want the follower UAV to be close to the mothership, deploying an optical sensing navigation system [4,5]. The guidance law for rendezvous has been presented to allow a fixed-wing UAV to rendezvous in a circular path, which creates an acceleration command based on the phase difference from the moving point and the side-bearing angle with respect to the center of the circle [6].
- In the future, rendezvous methods can be applied to swarm UAV missions to reduce working space and prevent collisions between UAVs, such as parcel delivery missions [7]. The research is implemented with different kinds of algorithms, such as sampling-based algorithms, node-based algorithms, mathematic model-based algorithms, bio-inspired algorithms, and multi-fusion-based algorithms [8]. A computational-intelligence-based UAV path-planning method for both rendezvous and delivery missions is also implemented [9,10].
2. Related Works
2.1. AirSim
2.2. Line-of-Sight Guidance-Based Bézier Algorithm (LOS-Based Bézier Method)
2.3. Nonlinear Kalman Filter
2.4. Accuracy Assessment
3. Materials and Methods
3.1. Kinematic Model
3.2. Measurement Model
3.3. Localization State Processes
Algorithm 1: Simulation Procedure for Localization |
|
3.4. Proposed Rendezvous State Processes
Algorithm 2: Simulation Procedure of the Rendezvous Method |
|
3.5. The Proposed Full Mission State Processes
Algorithm 3: Simulation Procedure for a Full Mission State |
|
4. Simulation Results
- -
- Section 4.1 presents the simulation results for the localization state processes (following the process in Section 3.3), which include the situation of the full GPS signal available case in Section 4.1.1 and the situation of the blocked GPS signal in Section 4.1.2.
- -
- Section 4.2 presents the simulation results of the proposed rendezvous state method by following the method proposed in Section 3.4.
- -
- Section 4.3 presents the simulation results for the proposed full mission state processes (referring to the process in Section 3.5).
- -
- Section 4.4 presents the result from implementing the proposed full mission state process (referring to the process in Section 3.5) for two UAVs.
4.1. Localization State Results
4.1.1. Full GPS Signal Result
4.1.2. Blocked GPS Signal Result
4.2. Rendezvous State Results
4.3. The Proposed Full Mission State Results
- Outside rendezvous zone
- Inside rendezvous zone
4.4. Implementation of the Proposed Full Mission State Process
- Pixhawk 4 Mini
- Frame: Holybro QAV250
- Holybro Telemetry Radio V3
- Motors—DR2205 KV2300
- 5″ Plastic Props
- Holybro GPS Neo-M8N
- Battery: MEGA POWER 3S 11.1 V 2200 mAh
- Fr-sky D4R-ii receiver
- Flysky FS-i6 Flight controller
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassanalian, M.; Abdelkefi, A. Classifications, applications, and design challenges of drones: A Review. Prog. Aerosp. Sci. 2017, 91, 99–131. [Google Scholar] [CrossRef]
- Shakhatreh, H.; Sawalmeh, A.H.; Al-Fuqaha, A.; Dou, Z.; Almaita, E.; Khalil, I.; Othman, N.S.; Khreishah, A.; Guizani, M. Unmanned Aerial Vehicles (uavs): A survey on civil applications and key research challenges. IEEE Access 2019, 7, 48572–48634. [Google Scholar] [CrossRef]
- Ghamry, K.A.; Kamel, M.A.; Zhang, Y. Multiple uavs in forest fire fighting mission using particle swarm optimization. In Proceedings of the 2017 International Conference on Unmanned Aircraft Systems (ICUAS), Miami, FL, USA, 13–16 June 2017. [Google Scholar] [CrossRef]
- Nichols, J.W.; Sun, L.; Beard, R.W.; McLain, T. Aerial rendezvous of small unmanned aircraft using a passive towed cable system. J. Guid. Control Dyn. 2014, 37, 1131–1142. [Google Scholar] [CrossRef] [Green Version]
- Wilson, D.; Goktogan, A.; Sukkarieh, S. Guidance and navigation for UAV Airborne Docking. In Robotics: Science and Systems XI; Sapienza University of Rome: Rome, Italy, 2015. [Google Scholar] [CrossRef]
- Park, S. Rendezvous guidance on circular path for fixed-wing UAV. Int. J. Aeronaut. Space Sci. 2020, 22, 129–139. [Google Scholar] [CrossRef]
- Antony, A.; Sivraj, P. Food Delivery Automation in restaurants using collaborative robotics. In Proceedings of the 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 11–12 July 2018. [Google Scholar] [CrossRef]
- Yang, L.; Qi, J.; Xiao, J.; Yong, X. A literature review of UAV 3D path planning. In Proceedings of the 11th World Congress on Intelligent Control and Automation, Shenyang, China, 29 June–27 July 2014. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, Z.; Liu, Y. Survey on computational-intelligence-based UAV path planning. Knowl. -Based Syst. 2018, 158, 54–64. [Google Scholar] [CrossRef]
- Coutinho, W.P.; Battarra, M.; Fliege, J. The unmanned aerial vehicle routing and trajectory optimisation problem, a taxonomic review. Comput. Ind. Eng. 2018, 120, 116–128. [Google Scholar] [CrossRef] [Green Version]
- Gans, N.; Dixon, W.; Lind, R.; Kurdila, A. A hardware in the loop simulation platform for vision-based control of Unmanned Air Vehicles. Mechatronics 2009, 19, 1043–1056. [Google Scholar] [CrossRef]
- Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. AirSim: High-fidelity visual and physical simulation for Autonomous Vehicles. In Field and Service Robotics, Proceedings of the 11th Conference on Field and Service Robotics, Zürich, Switzerland, 13–15 September 2017; Springer: Cham, Switzerland, 2017; pp. 621–635. [Google Scholar] [CrossRef] [Green Version]
- Farhad, M.A.; Mosavi, M.R.; Abedi, A.A. Fully adaptive smart vector tracking of weak GPS signals. Arab. J. Sci. Eng. 2021, 46, 1383–1393. [Google Scholar] [CrossRef]
- Hematulin, W.; Kamsing, P.; Torteeka, P.; Somjit, T.; Phisannupawong, T.; Jarawan, T. Cooperative Motion Planning for multiple uavs via the Bézier curve guided line of sight techniques. In Proceedings of the 2021 23rd International Conference on Advanced Communication Technology (ICACT), PyeongChang Kwangwoon Do, Republic of Korea, 13–16 February 2021. [Google Scholar] [CrossRef]
- Ingersoll, B.T.; Ingersoll, J.K.; DeFranco, P.; Ning, A. UAV path-planning using bezier curves and a receding horizon approach. In Proceedings of the AIAA Modeling and Simulation Technologies Conference, Washington, DC, USA, 13–17 June 2016. [Google Scholar] [CrossRef] [Green Version]
- Velez, P.; Certad, N.; Ruiz, E. Trajectory generation and tracking using the ar.drone 2.0 Quadcopter UAV. In Proceedings of the 2015 12th Latin American Robotics Symposium and 2015 3rd Brazilian Symposium on Robotics (LARS-SBR), Uberlandia, Brazil, 29–31 October 2015. [Google Scholar] [CrossRef]
- Lopez-Sanchez, I.; Rossomando, F.; Pérez-Alcocer, R.; Soria, C.; Carelli, R.; Moreno-Valenzuela, J. Adaptive trajectory tracking control for quadrotors with disturbances by using generalized regression neural networks. Neurocomputing 2021, 460, 243–255. [Google Scholar] [CrossRef]
- Moreno-Valenzuela, J.; Perez-Alcocer, R.; Guerrero-Medina, M.; Dzul, A. Nonlinear PID-type controller for quadrotor trajectory tracking. IEEE/ASME Trans. Mechatron. 2018, 23, 2436–2447. [Google Scholar] [CrossRef]
- Zhang, P.; Gu, J.; Milios, E.; Huynh, P. Navigation with IMU/GPS/digital compass with unscented Kalman filter. In Proceedings of the IEEE International Conference Mechatronics and Automation, Niagara Falls, ON, Canada, 29 July–1 August 2005. [Google Scholar] [CrossRef]
- Work, D.B.; Tossavainen, O.-P.; Blandin, S.; Bayen, A.M.; Iwuchukwu, T.; Tracton, K. An ensemble Kalman filtering approach to highway traffic estimation using GPS enabled mobile devices. In Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, 9–11 December 2008. [Google Scholar] [CrossRef]
- Gupta, A.; Fernando, X. Simultaneous localization and mapping (SLAM) and data fusion in unmanned aerial vehicles: Recent advances and challenges. Drones 2022, 6, 85. [Google Scholar] [CrossRef]
- Yi, S.; Zorzi, M. Robust kalman filtering under model uncertainty: The case of degenerate densities. IEEE Trans. Autom. Control 2022, 67, 3458–3471. [Google Scholar] [CrossRef]
- Koenig, N.; Howard, A. Design and use paradigms for gazebo, an open-source multi-robot simulator. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Sendai, Japan, 28 September–2 October 2004. [Google Scholar] [CrossRef] [Green Version]
- Meyer, J.; Sendobry, A.; Kohlbrecher, S.; Klingauf, U.; Von Stryk, O. Comprehensive simulation of quadrotor uavs using ROS and Gazebo. In Lecture Notes in Computer Science; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2012; Volume 7628, pp. 400–411. [Google Scholar] [CrossRef]
- Furrer, F.; Burri, M.; Achtelik, M.; Siegwart, R. RotorS—A modular gazebo MAV Simulator Framework. In Studies in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2016; pp. 595–625. [Google Scholar] [CrossRef]
- Robot Operating System (No Date) ROS. Available online: https://www.ros.org/ (accessed on 2 January 2023).
- AirSim AirSim Microsoft Open Source. Available online: https://microsoft.github.io/AirSim (accessed on 2 January 2023).
- Caharija, W.; Pettersen, K.Y.; Bibuli, M.; Calado, P.; Zereik, E.; Braga, J.; Gravdahl, J.T.; Sorensen, A.J.; Milovanovic, M.; Bruzzone, G. Integral line-of-sight guidance and control of underactuated marine vehicles: Theory, simulations, and experiments. IEEE Trans. Control Syst. Technol. 2016, 24, 1623–1642. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.-W.; Curry, R.; Elkaim, G. Path planning based on Bézier curve for autonomous ground vehicles. In Proceedings of the Advances in Electrical and Electronics Engineering—IAENG Special Edition of the World Congress on Engineering and Computer Science 2008, San Francisco, CA, USA, 22–24 October 2008. [Google Scholar] [CrossRef]
- Condomines, J.P. Nonlinear Kalman Filtering for Multi-Sensor Navigation of Unmanned Aerial Vehicles; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Mao, G.; Drake, S.; Anderson, B.D. Design of an extended Kalman filter for UAV localization. In Proceedings of the 2007 Information, Decision and Control, Adelaide, SA, Australia, 12–14 February 2007. [Google Scholar] [CrossRef]
- Kallapur, A.; Anavatti, S. UAV linear and nonlinear estimation using extended Kalman filter. In Proceedings of the 2006 International Conference on Computational Inteligence for Modelling Control and Automation and International Conference on Intelligent Agents Web Technologies and International Commerce (CIMCA’06), Sydney, NSW, Australia, 8 January 2007. [Google Scholar] [CrossRef]
- St-Pierre, M.; Gingras, D. Comparison between the unscented Kalman filter and the extended Kalman filter for the position estimation module of an Integrated Navigation Information System. In Proceedings of the IEEE Intelligent Vehicles Symposium, Parma, Italy, 14–17 June 2004. [Google Scholar] [CrossRef]
- Wan, E.A.; Van Der Merwe, R. The unscented Kalman filter for nonlinear estimation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373), Lake Louise, AB, Canada, 4 October 2000; pp. 153–158. [Google Scholar] [CrossRef]
- Julier, S.J.; Uhlmann, J.K. New extension of the Kalman filter to nonlinear systems. In Proceedings of the Proceedings Volume 3068, Signal Processing, Sensor Fusion, and Target Recognition VI, Orlando, FL, USA, 21–25 April 1997. [Google Scholar]
- Zhu, J. Conversion of earth-centered Earth-fixed coordinates to geodetic coordinates. IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 957–961. [Google Scholar] [CrossRef]
- ATAN2. Wikipedia. Wikimedia Foundation. 2022. Available online: https://en.wikipedia.org/wiki/Atan2 (accessed on 3 January 2023).
- Aerial Informatics and Robotics Platform. Microsoft Research. 2022. Available online: https://www.microsoft.com/en-us/research/project/aerial-informatics-robotics-platform (accessed on 3 January 2023).
- Yan, P.; Jiang, J.; Zhang, F.; Xie, D.; Wu, J.; Zhang, C.; Tang, Y.; Liu, J. An improved adaptive Kalman filter for a single frequency GNSS/MEMS-IMU/Odometer Integrated Navigation Module. Remote Sens. 2021, 13, 4317. [Google Scholar] [CrossRef]
- Alcántara, A.; Capitán, J.; Cunha, R.; Ollero, A. Optimal trajectory planning for cinematography with multiple Unmanned Aerial Vehicles. Robot. Auton. Syst. 2021, 140, 103778. [Google Scholar] [CrossRef]
- Alotaibi, K.A.; Rosenberger, J.M.; Mattingly, S.P.; Punugu, R.K.; Visoldilokpun, S. Unmanned aerial vehicle routing in the presence of threats. Comput. Ind. Eng. 2018, 115, 190–205. [Google Scholar] [CrossRef] [Green Version]
- Danancier, K.; Ruvio, D.; Sung, I.; Nielsen, P. Comparison of path planning algorithms for an unmanned aerial vehicle deployment under threats. IFAC-PapersOnLine 2019, 52, 1978–1983. [Google Scholar] [CrossRef]
- Xu, W.; Liu, X.; Chen, X.; Sun, Q. An artificial moment method for conflict resolutions with robots being close to their targets. Inf. Sci. 2021, 542, 286–301. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, W.; Mao, Z.; Liu, J.; Shen, L. Cooperative and geometric learning algorithm (CGLA) for path planning of uavs with limited information. Automatica 2014, 50, 809–820. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Fan, J.; Wu, J.; Wu, T. Control-oriented UAV highly feasible trajectory planning: A deep learning method. Aerosp. Sci. Technol. 2021, 110, 106435. [Google Scholar] [CrossRef]
RMSE of X (m) | RMSE of Y (m) | RMSE of XY (m) | RMSE of XYZ (m) | |||||
---|---|---|---|---|---|---|---|---|
Full GPS Signal | Blocked GPS Signal | Full GPS Signal | Blocked GPS Signal | Full GPS Signal | Blocked GPS Signal | Full GPS Signal | Blocked GPS Signal | |
GPS sensor | 0.15901 | 0.94677 | 0.21535 | 0.57575 | 0.26769 | 1.10809 | 0.27158 | 1.10903 |
EKF | 0.15636 | 0.28312 | 0.21379 | 0.34127 | 0.26487 | 0.44342 | 0.26880 | 0.44581 |
UKF | 0.14964 | 0.29380 | 0.19272 | 0.24207 | 0.24399 | 0.38068 | 0.24823 | 0.38341 |
ENKF | 0.13742 | 0.22031 | 0.16083 | 0.18997 | 0.21155 | 0.29091 | 0.21686 | 0.29538 |
GPS | EKF | UKF | ENKF | |
---|---|---|---|---|
RMSE of XYZ (m) | 0.65385 | 0.65179 | 0.60513 | 0.53544 |
Time (s) | 12 | 12 | 12 | 11 |
GPS | EKF | UKF | ENKF | |
---|---|---|---|---|
RMSE of XYZ outside Rendezvous (m) | 0.71376 | 0.69982 | 0.65594 | 0.51319 |
RMSE of XYZ inside Rendezvous (m) | 0.76316 | 0.76243 | 0.75740 | 0.75051 |
Time (s) | 22 | 22 | 22 | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hematulin, W.; Kamsing, P.; Torteeka, P.; Somjit, T.; Phisannupawong, T.; Jarawan, T. Trajectory Planning for Multiple UAVs and Hierarchical Collision Avoidance Based on Nonlinear Kalman Filters. Drones 2023, 7, 142. https://doi.org/10.3390/drones7020142
Hematulin W, Kamsing P, Torteeka P, Somjit T, Phisannupawong T, Jarawan T. Trajectory Planning for Multiple UAVs and Hierarchical Collision Avoidance Based on Nonlinear Kalman Filters. Drones. 2023; 7(2):142. https://doi.org/10.3390/drones7020142
Chicago/Turabian StyleHematulin, Warunyu, Patcharin Kamsing, Peerapong Torteeka, Thanaporn Somjit, Thaweerath Phisannupawong, and Tanatthep Jarawan. 2023. "Trajectory Planning for Multiple UAVs and Hierarchical Collision Avoidance Based on Nonlinear Kalman Filters" Drones 7, no. 2: 142. https://doi.org/10.3390/drones7020142
APA StyleHematulin, W., Kamsing, P., Torteeka, P., Somjit, T., Phisannupawong, T., & Jarawan, T. (2023). Trajectory Planning for Multiple UAVs and Hierarchical Collision Avoidance Based on Nonlinear Kalman Filters. Drones, 7(2), 142. https://doi.org/10.3390/drones7020142