Blowing in the Wind: Using a Consumer Drone for the Collection of Humpback Whale (Megaptera novaeangliae) Blow Samples during the Arctic Polar Nights
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Equipment
2.2. Sampling Method and Processing
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Ethics statement
References
- Castellini, M. History of polar whaling: Insights into the physiology of the great whales. Comp. Biochem. Physiol. -A Mol. Integr. Physiol. 2000, 126, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Waugh, C.A.; Monamy, V. Opposing lethal wildlife research when nonlethal methods exist: Scientific whaling as a case study. J. Fish. Wildl. Manag. 2016, 7, 231–236. [Google Scholar] [CrossRef]
- Sanderson, C.E.; Alexander, K.A. Unchartered waters: Climate change likely to intensify infectious disease outbreaks causing mass mortality events in marine mammals. Glob. Chang. Biol. 2020, 26, 4284–4301. [Google Scholar] [CrossRef] [PubMed]
- van Weelden, C.; Towers, J.R.; Bosker, T. Impacts of climate change on cetacean distribution, habitat and migration. Clim. Chang. Ecol. 2021, 1, 100009. [Google Scholar] [CrossRef]
- Redfern, J.V.; McKenna, M.F.; Moore, T.J.; Calambokidis, J.; Deangelis, M.L.; Becker, E.A.; Barlow, J.; Forney, K.A.; Fiedler, P.C.; Chivers, S.J. Assessing the Risk of Ships Striking Large Whales in Marine Spatial Planning. Conserv Biol. 2013, 27, 292–302. [Google Scholar] [CrossRef]
- Wise, J.P., Jr.; Wise, J.T.; Wise, C.F.; Wise, S.S.; Zhu, C.; Browning, C.L.; Zheng, T.; Perkins, C.; Gianios, C., Jr.; Xie, H.; et al. Metal levels in Whales from the Gulf of Maine: A One Environmental Health Approach. Chemosphere 2019, 216, 653–660. [Google Scholar] [CrossRef]
- Fossi, M.C.; Panti, C.; Guerranti, C.; Coppola, D.; Giannetti, M.; Marsili, L.; Minutoli, R. Are baleen whales exposed to the threat of microplastics? A case study of the Mediterranean fin whale (Balaenoptera physalus). Mar Pollut Bull. 2012, 64, 2374–2379. [Google Scholar] [CrossRef]
- Blair, H.B.; Merchant, N.D.; Friedlaender, A.S.; Wiley, D.N.; Parks, S.E. Evidence for ship noise impacts on humpback whale foraging behaviour. Biol. Lett. 2016, 12, 20160005. [Google Scholar] [CrossRef]
- Hunt, K.E.; Moore, M.J.; Rolland, R.M.; Kellar, N.M.; Hall, A.J.; Kershaw, J.; Raverty, S.A.; Davis, C.E.; Yeates, L.C.; Fauquier, D.A.; et al. Overcoming the challenges of studying conservation physiology in large whales: A review of available methods. Conserv Physiol. 2013, 1, cot006. [Google Scholar] [CrossRef]
- Groch, K.; Blazquez, D.; Marcondes, M.; Santos, J.; Colosio, A.; Delgado, J.D.; Catão-Dias, J. Cetacean morbillivirus in Humpback whales’ exhaled breath. Trans. Emerg. Dis. 2021, 68, 1736–1743. [Google Scholar] [CrossRef]
- Hogg, C.J.; Vickers, E.R.; Rogers, T.L. Determination of testosterone in saliva and blow of bottlenose dolphins (Tursiops truncatus) using liquid chromatography-mass spectrometry. J. Chromatogr. B. 2005, 814, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Hogg, C.J.; Rogers, T.L.; Shorter, A.; Barton, K.; Miller, P.J.O.; Nowacek, D. Determination of steroid hormones in whale blow: It is possible. Mar. Mammal. Sci. 2009, 25, 605–618. [Google Scholar] [CrossRef]
- Thompson, L.A.; Spoon, T.R.; Goertz, C.E.C.; Hobbs, R.C.; Romano, T.A. Blow collection as a non-invasive method for measuring cortisol in the beluga (Delphinapterus leucas). PLoS ONE 2014, 9, e114062. [Google Scholar] [CrossRef] [PubMed]
- Burgess, E.A.; Hunt, K.E.; Kraus, S.D.; Rolland, R.M. Get the most out of blow hormones: Validation of sampling materials, field storage and extraction techniques for whale respiratory vapour samples. Conserv. Physiol. 2016, 4, 1–11. [Google Scholar] [CrossRef]
- Aksenov, A.; Yeates, L.; Pasamontes, A.; Siebe, C.; Zrodnikov, Y.; Simmons, J.; McCartney, M.; Deplanque, J.-P.; Wells, R.; Davis, C. Metabolite content profiling of bottlenose dolphin exhaled breath. Anal. Chem. 2014, 86, 10616–10624. [Google Scholar] [CrossRef]
- Mingramm, F.M.J.; Keeley, T.; Whitworth, D.J.; Dunlop, R.A. Relationships between blubber and respiratory vapour steroid hormone concentrations in humpback whales (Megaptera novaeangliae). Aquat. Mamm. 2019, 45, 465–477. [Google Scholar] [CrossRef]
- Acevedo-Whitehouse, K.; Rocha-Gosselin, A.; Gendron, D. A novel non-invasive tool for disease surveillance of free-ranging whales and its relevance to conservation programs. Anim. Conserv. 2010, 13, 217–225. [Google Scholar] [CrossRef]
- Burgess, E.A.; Hunt, K.E.; Kraus, S.D.; Rolland, R.M. Quantifying hormones in exhaled breath for physiological assessment of large whales at sea. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef]
- Hunt, K.E.; Rolland, R.M.; Kraus, S.D. Detection of steroid and thyroid hormones via immunoassay of North Atlantic right whale (Eubalaena glacialis) respiratory vapor. Mar. Mammal. Sci. 2014, 30, 796–809. [Google Scholar] [CrossRef]
- Mutlu, G.M.; Garey, K.W.; Robbins, R.A.; Danziger, L.H.; Rubinstein, I. Collection and analysis of exhaled breath condensate in humans. Am. J. Respir. Crit. Care Med. 2001, 164, 731–737. [Google Scholar] [CrossRef]
- Popov, T.A. Human exhaled breath analysis. Ann. Allergy Asthma. Immunol. 2011, 106, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Geoghegan, J.; Pirotta, V.; Harvey, E.; Smith, A.; Buchmann, J.; Ostrowski, M.; Eden, J.-S.; Harcourt, R.; Holmes, E. Virological sampling of inaccessible wildlife with drones. Viruses 2018, 10, 300. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, S.; Rogan, A.; Baker, C.S.; Dagdag, R.; Redlinger, M.; Polinski, J.; Urban, J.; Sremba, A.; Branson, M.; Mashburn, K.; et al. Genetic, Endocrine, and Microbiological Assessments of Blue, Humpback and Killer Whale Health using Unoccupied Aerial Systems. Wildl. Soc. Bull. 2021, 1–16. [Google Scholar] [CrossRef]
- Apprill, A.; Miller, C.A.; Moore, M.J.; Durban, J.W.; Fearnbach, H.; Barrett-Lennard, L.G. Extensive Core Microbiome in Drone-Captured Whale Blow Supports a Framework for Health Monitoring. mSystems 2017, 2. [Google Scholar] [CrossRef]
- Raverty, S.; Rhodes, L.; Zabek, E.; Eshghi, A.; Cameron, C.; Hanson, B.; Schroeder, P. Respiratory Microbiome of Endangered Southern Resident Killer Whales and Microbiota of Surrounding Sea Surface Microlayer in the Eastern North Pacific. Sci. Rep. 2017, 7, 394. [Google Scholar] [CrossRef]
- Pirotta, V.; Smith, A.; Ostrowski, M.; Russell, D.; Jonsen, I.D.; Grech, A.; Harcourt, R. An economical Custom-Built drone for assessing whale health. Front. Mar. Sci. 2017, 4, 425. [Google Scholar] [CrossRef]
- Robinson, C.V.; Nuuttila, H.K. Don’t hold your breath: Limited DNA capture using non-invasive blow sampling for small cetaceans. Aquat. Mamm. 2020, 46, 32–41. [Google Scholar] [CrossRef]
- Richard, J.T.; Schultz, K.; Goertz, C.E.C.; Hobbs, R.C.; Romano, T.A.; Sartini, B.L. Evaluating beluga (Delphinapterus leucas) blow samples as a potential diagnostic for immune function gene expression within the respiratory system. Conserv. Physiol. 2022, 10, 1–9. [Google Scholar] [CrossRef]
- Centelleghe, C.; Carraro, L.; Gonzalvo, J.; Rosso, M.; Esposti, E.; Gili, C.; Bonato, M.; Pedrotti, D.; Cardazzo, B.; Povinelli, M.; et al. The use of Unmanned Aerial Vehicles (UAVs) to sample the blow microbiome of small cetaceans. PLoS ONE 2020, 15, e0246177. [Google Scholar] [CrossRef]
- Raudino, H.C.; Tyne, J.A.; Smith, A.; Ottewell, K.; McArthur, S.; Kopps, A.M.; Chabanne, D.; Harcourt, R.G.; Pirotta, V.; Waples, K. Challenges of collecting blow from small cetaceans. Ecosphere 2019, 10, e02901. [Google Scholar] [CrossRef]
- Domínguez-Sánchez, C.A.; Acevedo-Whitehouse, K.A.; Gendron, D. Effect of drone-based blow sampling on blue whale (Balaenoptera musculus) behavior. Mar. Mammal. Sci. 2018, 34, 841–850. [Google Scholar] [CrossRef]
- Torres, L.G.; Nieukirk, S.L.; Lemos, L.; Chandler, T.E. Drone up! Quantifying whale behavior from a new perspective improves observational capacity. Front. Mar. Sci. 2018, 5, 319. [Google Scholar] [CrossRef]
- Aoki, K.; Isojunno, S.; Bellot, C.; Iwata, T.; Kershaw, J.; Akiyama, Y.; López, L.M.M.; Ramp, C.; Biuw, M.; Swift, R.; et al. Aerial photogrammetry and tag-derived tissue density reveal patterns of lipid-store body condition of humpback whales on their feeding grounds. Proc. R Soc. B Biol. Sci. 2021, 288, 20202307. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, F.; Sironi, M.; Moore, M.J.; Di Martino, M.; Ricciardi, M.; Warick, H.A.; Irschick, D.J.; Gutierrez, R.; Uhart, M.M. Estimating body mass of free-living whales using aerial photogrammetry and 3D volumetrics. Methods Ecol Evol. 2019, 10, 2034–2044. [Google Scholar] [CrossRef]
- Christiansen, F.; Sironi, M.; Moore, M.J.; Di Martino, M.; Ricciardi, M.; Warick, H.A.; Irschick, D.J.; Gutierrez, R.; Uhart, M.M. Estimating body mass of sperm whales from aerial photographs. Mar. Mammal. Sci. 2022, 136–154. [Google Scholar] [CrossRef]
- Monks, J.M.; Wills, H.P.; Knox, C.D. Testing Drones as a Tool for Surveying Lizards. Drones 2022, 6, 199. [Google Scholar] [CrossRef]
- Fettermann, T.; Fiori, L.; Gillman, L.; Stockin, K.A.; Bollard, B. Drone Surveys Are More Accurate Than Boat-Based Surveys of Bottlenose Dolphins (Tursiops truncatus). Drones 2022, 6, 82. [Google Scholar] [CrossRef]
- Jones, I.V.G.P.; Pearsltine, L.G.; Percival, H.F. An Assessment of Small Unmanned Aerial Vehicles for Wildlife Research. Wildl. Soc. Bull. 2006, 34, 750–758. [Google Scholar] [CrossRef]
- Hodgson, J.C.; Mott, R.; Baylis, S.M.; Pham, T.T.; Wotherspoon, S.; Kilpatrick, A.D.; Segaran, R.R.; Reid, I.; Terauds, A.; Koh, L.P. Drones count wildlife more accurately and precisely than humans. Methods Ecol. Evol. 2018, 9, 1160–1167. [Google Scholar] [CrossRef]
- Ramp, C.; Gaspard, D.; Gavrilchuk, K.; Unger, M.; Schleimer, A.; Delarue, J.; Landry, S.; Sears, R. Up in the air: Drone images reveal underestimation of entanglement rates in large rorqual whales. Endanger. Species Res. 2021, 44, 33–44. [Google Scholar] [CrossRef]
- Chabot, D.; Bird, D.M. Wildlife research and management methods in the 21st century: Where do unmanned aircraft fit in? J. Unmanned. Veh. Syst. 2015, 3, 137–155. [Google Scholar] [CrossRef]
- Christiansen, F.; Rojano-Doñate, L.; Madsen, P.T.; Bejder, L. Noise levels of multi-rotor unmanned aerial vehicles with implications for potential underwater impacts on marine mammals. Front. Mar. Sci. 2016, 3, 277. [Google Scholar] [CrossRef]
- Hamilton, C.; Lydersen, C.; Aars, J.; Biuw, M.; Boltunov, A.N.; Born, E.W.; Dietz, R.; Folkow, L.P.; Glazov, D.M.; Haug, T.; et al. Marine mammal hotspots in the Greenland and Barents Seas. Mar. Ecol. Prog. Ser. 2021, 659, 3–28. [Google Scholar] [CrossRef]
- Ramm, T. Hungry During Migration? Humpback Whale Movement from the Barents Sea to a Feeding Stopover in Northern Norway Revealed by Photo-ID Analysis. 2020. Available online: https://munin.uit.no/handle/10037/19109 (accessed on 15 September 2022).
- Kettemer, L.E.; Rikardsen, A.H.; Biuw, M.; Broms, F.; Mul, E.; Blanchet, M.-A. Round-trip migration and energy budget of a breeding female humpback whale in the Northeast Atlantic. PLoS ONE 2022, 17, e0268355. [Google Scholar] [CrossRef] [PubMed]
- Sprogis, K.R.; Videsen, S.; Madsen, P.T. Vessel noise levels drive behavioural responses of humpback whales with implications for whale-watching. Elife 2020, 9, e56760. [Google Scholar] [CrossRef]
- Palomino-González, A.; Kovacs, K.M.; Lydersen, C.; Ims, R.A.; Lowther, A.D. Drones and marine mammals in Svalbard, Norway. Mar. Mammal. Sci. 2021, 37, 1212–1229. [Google Scholar] [CrossRef]
- Raoult, V.; Colefax, A.P.; Allan, B.M.; Cagnazzi, D.; Castelblanco-Martínez, N.; Ierodiaconou, D.; Johnston, D.; Yauri, S.L.; Lyons, M.; Pirotta, V.; et al. Operational protocols for the use of drones in marine animal research. Drones 2020, 4, 64. [Google Scholar] [CrossRef]
Day | Flight | Start | Total | Successful/ Unsuccessful | Group ID | Group Size (Indiv. Sampled) | Hours of Light | T °C | Wind (km/h) |
---|---|---|---|---|---|---|---|---|---|
23 November 2021 | 1 | 10 h 06 | 4 min | Unsuccessful | - | - | 1 h 32 of daylength (6 h 05 of CV) | −5/−6 °C | 21–26 km/h |
2 | 10 h 17 | 5 min | Unsuccessful | - | - | ||||
3 | 10 h 28 | 1 min | Unsuccessful | - | - | ||||
24 November 2021 | 5 | 12 h 29 | 12 min | Unsuccessful | - | - | 1 h 02 of day length (5 h 58 of CV) | −1/−8 °C | 9–19 km/h |
25 November 2021 | 6 | 08 h 02 | 4 min | Unsuccessful | - | - | Sundown all day (5 h 52 of CV) | −8/−11 °C | 24–27 km/h |
7 | 08 h 09 | 5 min | Successful | Group 1 | 4 (2) | ||||
8 | 08 h 38 | 5 min | Control | - | - | ||||
9 | 09 h 12 | 5 min | Successful | Group 2 | 5 (3) | ||||
10 | 9 h 38 | 3 min | Unsuccessful | - | - | ||||
11 | 09 h 49 | 3 min | Unsuccessful | - | - | ||||
12 | 09 h 53 | 6 min | Successful | Group 3 | 12–14 (2) | ||||
13 | 10 h 09 | 4 min | Successful | ||||||
14 | 10 h 51 | 2 min | Unsuccessful | - | - | ||||
15 | 11 h 26 | 4 min | Successful | Group 4 | 6–8 (3) | ||||
16 | 11 h 47 | 8 min | Control | - | - | ||||
17 | 12 h 06 | 13 min | Unsuccessful | - | - | ||||
26 November 2021 | 18 | 08 h 07 | 2 min | Unsuccessful | - | - | Sundown all day (5 h 45 of CV) | −8/−9 °C | 21 km/h |
19 | 08 h 22 | 3 min | Successful | Group 5 | 4 (1) | ||||
20 | 08 h 52 | 4 min | Successful | Group 6 | 3 (1) | ||||
21 | 09 h 54 | 4 min | Successful | ||||||
22 | 10 h 43 | 2 min | Unsuccessful | - | - | ||||
23 | 11 h 52 | 4 min | Successful | Group 7 | 5 (3) | ||||
24 | 12 h 03 | 5 min | Successful | ||||||
25 | 12 h 17 | 3 min | Successful | ||||||
26 | 12 h 30 | 5 min | Control | - | - | ||||
27 November 2021 | 27 | 10 h 06 | 9 min | Successful | Group 8 | 2 (2) | Sundown all day (5 h 38 of CV) | −7/−9 °C | 17–30 km/h |
28 | 10 h 43 | 14 min | Successful | ||||||
29 | 11 h 51 | 2 min | Successful | Group 9 | 6 (3) | ||||
30 | 11 h 53 | 4 min | Unsuccessful | - | - | ||||
31 | 12 h 21 | 2 min | Successful | Group 10 | 2 (1) | ||||
32 | 12 h 41 | 6 min | Control | - | - | ||||
28 November 2021 | 33 | 11 h 20 | 3 min | Control | - | - | Sundown all day (5 h 32 of CV) | −1/−18 °C | 31 km/h |
34 | 11 h 30 | 4 min | Successful | Group 11 | 6–7 (2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, H.; Rogan, A.; Zadra, C.; Larsen, O.; Rikardsen, A.H.; Waugh, C. Blowing in the Wind: Using a Consumer Drone for the Collection of Humpback Whale (Megaptera novaeangliae) Blow Samples during the Arctic Polar Nights. Drones 2023, 7, 15. https://doi.org/10.3390/drones7010015
Costa H, Rogan A, Zadra C, Larsen O, Rikardsen AH, Waugh C. Blowing in the Wind: Using a Consumer Drone for the Collection of Humpback Whale (Megaptera novaeangliae) Blow Samples during the Arctic Polar Nights. Drones. 2023; 7(1):15. https://doi.org/10.3390/drones7010015
Chicago/Turabian StyleCosta, Helena, Andrew Rogan, Christopher Zadra, Oddbjørn Larsen, Audun H. Rikardsen, and Courtney Waugh. 2023. "Blowing in the Wind: Using a Consumer Drone for the Collection of Humpback Whale (Megaptera novaeangliae) Blow Samples during the Arctic Polar Nights" Drones 7, no. 1: 15. https://doi.org/10.3390/drones7010015
APA StyleCosta, H., Rogan, A., Zadra, C., Larsen, O., Rikardsen, A. H., & Waugh, C. (2023). Blowing in the Wind: Using a Consumer Drone for the Collection of Humpback Whale (Megaptera novaeangliae) Blow Samples during the Arctic Polar Nights. Drones, 7(1), 15. https://doi.org/10.3390/drones7010015