Aircraft Carrier Pose Tracking Based on Adaptive Region in Visual Landing
Abstract
:1. Introduction
2. Scale-Adaptive Local Region-Based Monocular Pose Tracking Method
2.1. Monocular Pose Tracking Problem
2.2. Pose Tracking Model based on Scale-Adaptive Local Region
2.3. Pose Optimization
3. Experimental Evaluation
3.1. Experiment Setting
3.2. Experiment on Synthetic Image Sequence
3.2.1. Synthetic Sequence Settings
3.2.2. Experimental Results and Analysis
3.3. Experiment on Real Image Sequence
3.3.1. Scale Physical Simulation Platform
3.3.2. Experimental Results and Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, H.; Luo, F.; Shi, X.; Liu, B.; Lian, X. Analysis on the Status Quo and Development Trend of Automatic Carrier Landing Technology. Aircr. Des. 2020, 1–5. (In Chinese) [Google Scholar] [CrossRef]
- Zhen, Z.; Wang, X.; Jiang, J.; Yang, Y. Research progress in guidance and control of automatic carrier landing of carrier-based aircraft. Acta Aeronaut. Astronaut. Sin. 2017, 38, 22. (In Chinese) [Google Scholar]
- Wei, Z. Overview of Visual Measurement Technology for Landing Position and Attitude of Carrier-Based Aircraft. Meas. Control. Technol. 2020, 39, 2–6. (In Chinese) [Google Scholar]
- Xu, G.; Cheng, Y.; Shen, C. Key Technology of Unmanned Aerial Vehicle’s Navigation and Automatic Landing in All Weather Based on the Cooperative Object and Infrared Computer Vision. Acta Aeronaut. Astronaut. Sinica 2008, 2, 437–442. (In Chinese) [Google Scholar]
- Wang, X.-H.; Xu, G.-L.; Tian, Y.-P.; Wang, B.; Wang, J.-D. UAV’s Automatic Landing in All Weather Based on the Cooperative Object and Computer Vision. In Proceedings of the 2012 Second International Conference on Instrumentation, Measurement, Computer, Communication and Control, Harbin, China, 8–10 December 2012. [Google Scholar]
- Gui, Y.; Guo, P.; Zhang, H.; Lei, Z.; Zhou, X.; Du, J.; Yu, Q. Airborne Vision-Based Navigation Method for UAV Accuracy Landing Using Infrared Lamps. J. Intell. Robot. Syst. 2013, 72, 197–218. [Google Scholar] [CrossRef]
- Wang, G.; Li, H.; Ding, W.; Li, H. Technology of UAV Vision-guided Landing on a Moving Ship. J. China Acad. Electron. Inf. Technol. 2012, 7, 274–278. (In Chinese) [Google Scholar]
- Chen, L. Research on the Autonomous Landing Flight Control Technology for UAV Based on Visual Servoing. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2009. (In Chinese). [Google Scholar]
- Hao, S.; Chen, Y.M.; Ma, X.; Wang, T.; Zhao, J.T. Robust corner precise detection algorithm for visual landing navigation of UAV. J. Syst. Eng. Electron. 2013, 35, 1262–1267. (In Chinese) [Google Scholar]
- Wei, X.H.; Tang, C.Y.; Wang, B.; Xu, G.L. Three-dimensional cooperative target structure design and location algorithm for vision landing. Syst. Eng.-Theory Pract. 2019, 39, 9. (In Chinese) [Google Scholar]
- Zhuang, L.; Han, Y.; Fan, Y.; Cao, Y.; Wang, B.; Qin, Z. Method of pose estimation for UAV landing. Chin. Opt. Lett. 2012, 10, S20401–S320404. [Google Scholar] [CrossRef] [Green Version]
- Anitha, G.; Kumar, R.N.G. Vision Based Autonomous Landing of an Unmanned Aerial Vehicle. Procedia Eng. 2012, 38, 2250–2256. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.M.; Zhong, Q.; Zhang, Y.Q.; Lei, Z.H.; Zhang, X.H. Vision-based landing method using structured line features of runway surface for fixed-wing unmanned aerial vehicles. J. Natl. Univ. Def. Technol. 2016, 38, 9. (In Chinese) [Google Scholar]
- Coutard, L.; Chaumette, F.; Pflimlin, J.M. Automatic landing on aircraft carrier by visual servoing. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011. [Google Scholar]
- Bi, D.; Huang, H.; Fan, J.; Chen, G.; Zhang, H. Non-cooperative Structural Feature Matching Algorithm in Visual Landing. J. Nanjing Univ. Aeronaut. Astronaut. 2021, 53, 7. (In Chinese) [Google Scholar]
- Zhou, J.; Wang, Z.; Bao, Y.; Wang, Q.; Sun, X.; Yu, Q. Robust monocular 3D object pose tracking for large visual range variation in robotic manipulation via scale-adaptive region-based method. Int. J. Adv. Robot. Syst. 2022, 19, 7778–7785. [Google Scholar] [CrossRef]
- Lepetit, V.; Fua, P. Monocular Model-Based 3D Tracking of Rigid Objects; Now Publishers Inc.: Delft, The Netherlands, 2005. [Google Scholar]
- Seo, B.K.; Wuest, H. A Direct Method for Robust Model-Based 3D Object Tracking from a Monocular RGB Image. In Proceedings of the European Conference on Computer Vision 2016 Workshops (ECCVW), Amsterdam, The Netherlands, 8–10 and 15–16 October 2016. [Google Scholar]
- Rosten, E.; Drummond, T. Fusing points and lines for high performance tracking. In Proceedings of the Tenth IEEE International Conference on Computer Vision, Beijing, China, 17–21 October 2005. [Google Scholar]
- Seo, B.K.; Park, H.; Park, J.-I.; Hinterstoisser, S.; Ilic, S. Optimal local searching for fast and robust textureless 3D object tracking in highly cluttered backgrounds. IEEE Trans. Vis. Comput. Graph. 2013, 20, 99–110. [Google Scholar]
- Wang, G.; Wang, B.; Zhong, F.; Qin, X.; Chen, B. Global optimal searching for textureless 3D object tracking. Vis. Comput. 2015, 31, 979–988. [Google Scholar] [CrossRef]
- Prisacariu, V.A.; Reid, I.D. PWP3D: Real-time segmentation and tracking of 3D objects. Int. J. Comput. Vis. 2012, 98, 335–354. [Google Scholar] [CrossRef] [Green Version]
- Hexner, J.; Hagege, R.R. 2D-3D pose estimation of heterogeneous objects using a region-based approach. Int. J. Comput. Vis. 2016, 118, 95–112. [Google Scholar] [CrossRef]
- Tjaden, H.; Schwanecke, U.; Schömer, E.; Cremers, D. A region-based gauss-newton approach to real-time monocular multiple object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 1797–1812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidal, R.; Ma, Y. A unified algebraic approach to 2-D and 3-D motion segmentation and estimation. J. Math. Imaging Vis. 2006, 25, 403–421. [Google Scholar] [CrossRef]
- Zhang, Z. A Flexible New Technique for Camera Calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Chi, X.; Ming, X. A Robust O(n) Solution to the Perspective-n-Point Problem. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1444–1450. [Google Scholar] [CrossRef] [PubMed]
3D Model Size | Focal Length | Field Angle | Frame Size |
---|---|---|---|
94.36 m × 66.01 m × 304.51 m | 12 mm | 24° × 18° | 800 × 600 |
Carrier Model Scale | Track Length | Focal Length | Frame Rate | Frame Size |
---|---|---|---|---|
700:1 | 4 m | 12 mm | 30 fps | 800 × 800 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Wang, Q.; Zhang, Z.; Sun, X. Aircraft Carrier Pose Tracking Based on Adaptive Region in Visual Landing. Drones 2022, 6, 182. https://doi.org/10.3390/drones6070182
Zhou J, Wang Q, Zhang Z, Sun X. Aircraft Carrier Pose Tracking Based on Adaptive Region in Visual Landing. Drones. 2022; 6(7):182. https://doi.org/10.3390/drones6070182
Chicago/Turabian StyleZhou, Jiexin, Qiufu Wang, Zhuo Zhang, and Xiaoliang Sun. 2022. "Aircraft Carrier Pose Tracking Based on Adaptive Region in Visual Landing" Drones 6, no. 7: 182. https://doi.org/10.3390/drones6070182
APA StyleZhou, J., Wang, Q., Zhang, Z., & Sun, X. (2022). Aircraft Carrier Pose Tracking Based on Adaptive Region in Visual Landing. Drones, 6(7), 182. https://doi.org/10.3390/drones6070182