Quality Analysis of Tuberculosis Specimens Transported by Drones versus Ground Transportation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
- Adherence to the standards and requirements defined by the Directiva Operacional de Segurança (DOS-09-2018);
- An area with semi-rural or rural population density to minimize ground risk;
- A geodesic distance of 20–25 km between the laboratory and the health facility;
- A close proximity to a reference laboratory for quality analyses;
- Approval from DPS.
- Macroscopic evaluation and classification on the specimen purulent, mucoid, salivary and hemoptoic qualities;
- Review the sample and requisition form to verify that it was the correct analysis requested by the clinician;
- Check if the vial containing the sample is labeled with the date and time of collection, if you do not have the time of collection, ask the patient what time it was done;
- Remove samples from the transport box and place the box in the disinfection room;
- Register samples in the computer system and label the sample with the assigned code, which is maintained throughout the analytical processing to ensure sample and patient traceability;
- Mechanical homogenization, to avoid mycobacteria clumping within the specimen, by vortexing with the aid of sterile glass beads;
- Division of each sample into 2 aliquots (maximum 4 mL of sputum), place samples in 50 mL falcon tubes and coded each accordingly (“A” for aerial specimens and “T” for ground specimens) with duplicate identification numbers.
2.2. Sample Analysis
2.3. Drone Platform
2.4. Ethical and Safety Consideration
3. Results
3.1. Sample Collection
3.2. Drone Flights
3.3. Laboratory Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Global Health Observatory, World Health Organization. Incidence of Tuberculosis (per 100,000 population per year). Available online: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/incidence-of-tuberculosis-(per-100-000-population-per-year) (accessed on 3 February 2022).
- The Global Health Observatory, World Health Organization. Incidence of Tuberculosis (per 100,000 Population) (HIV-Positive Cases). Available online: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/incidence-of-tuberculosis-(per-100-000-population)-(hiv-positive-cases) (accessed on 3 February 2022).
- The Global Fund. Tuberculosis. Available online: www.theglobalfund.org/en/tuberculosis (accessed on 3 February 2022).
- The World Bank. Mozambique Country Profile. Available online: http://data.worldbank.org/country/mozambique (accessed on 3 February 2022).
- Amukele, T.K.; Street, J.; Carroll, K.; Miller, H.; Zhang, S.X. Drone Transport of Microbes in Blood and Sputum Laboratory Specimen. J. Clin. Microbiol. 2016, 54, 2622–2625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verbeke, J.; Debruyne, S. Vibration analysis of a UAV multirotor frame. In Proceedings of the ISMA 2016 International Conference on Noise and Vibration Engineering, Leuven, Belgium, 9–21 September 2016; pp. 2329–2337. [Google Scholar]
- Tucker, J. Drones in Healthcare. 2017. Available online: https://www.dronesinhealthcare.com (accessed on 13 February 2021).
- Hiebert, B.; Nouvet, E.; Jeyabalan, V.; Donelle, L. The Application of Drones in Healthcare and Health-Related Services in North America: A Scoping Review. Drones 2020, 4, 30. [Google Scholar] [CrossRef]
- Amukele, T.K.; Sokoll, L.J.; Pepper, D.; Howard, D.P.; Street, J. Can Unmanned Aerial Systems (Drones) Be Used for the Routine Transport of Chemistry, Hematology, and Coagulation Laboratory Specimens? PLoS ONE 2015, 10, e0134020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosser, J.C.; Vignesh, V.; Terwilliger, B.A.; Parker, B.C. Surgical and Medical Applications of Drones: A Comprehensive Review. JSLS J. Soc. Laparoendosc. Surg. 2018, 22, e2018.00018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scalea, J.R.; Restaino, S.; Scassero, M.; Blankenship, G.; Bartlett, S.T.; Wereley, N. An Initial Investigation of Unmanned Aircraft Systems (UAS) and Real-Time Organ Status Measurement for Transporting Human Organs. IEEE J. Transl. Eng. Health Med. 2018, 6, 4000107. [Google Scholar] [CrossRef] [PubMed]
- Claesson, A.; Fredman, D.; Svensson, L.; Ringh, M.; Hollenberg, J.; Nordberg, P.; Rosenqvist, M.; Djarv, T.; Österberg, S.; Lennartsson, J.; et al. Unmanned aerial vehicles (drones) in out-of-hospital-cardiac-arrest. Scand. J. Trauma Resusc. Emerg. Med. 2016, 24, 124. [Google Scholar] [CrossRef] [PubMed]
- Hassanalian, M.; Abdelkefi, A. Classifications, applications, and design challenges of drones: A review. Prog. Aerosp. Sci. 2017, 91, 99–131. [Google Scholar] [CrossRef]
- Amukele, T.K.; Hernandez, J.; Snozek, C.L.H.; Wyatt, F.-C.R.G.; Douglas, M.; Amini, R.; Street, J. Drone Transport of Chemistry and Hematology Samples Over Long Distances. Am. J. Clin. Pathol. 2017, 148, 427–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nisingizwe, M.P.; Ndishimye, P.; Swaibu, K.; Nshimiyimana, L.; Karame, P.; Dushimiyimana, V.; Musabyimana, J.P.; Musanabaganwa, C.; Nsanzimana, S.; Law, M.R. Effect of Unmanned aerial vehicle (drone) delivery on blood product delivery time and wastage in Rwanda: A retrospective, cross-sectional study and time series analysis. Lancet Glob. Health 2022, 10, e564–e569. [Google Scholar] [CrossRef]
- WeRobotics. Building Humanitarian UAV Coordination in Mozambique. 2017. Available online: https://blog.werobotics.org/2017/11/21/building-humanitarian-uav-coordination-in-mozambique/ (accessed on 10 February 2022).
- Available online: https://www.villagereach.org/wp-content/uploads/2017/06/Malawi-UAS-Report_MOH-Draft_-FINAL_14_07_16.pdf (accessed on 27 January 2022).
- Moshref-Javadi, M.; Winkenbach, M. Applications and Research avenues for drone-based models in logistics: A classification and review. Expert Syst. Appl. 2021, 177, 114854. [Google Scholar] [CrossRef]
- Truog, S.; Maxim, L.; Matemba, C.; Blauvelt, C.; Ngwira, H.; Makaya, A.; Moreira, S.; Lawrence, E.; Ailstock, G.; Weitz, A.; et al. Insights Before Flights: How Community Perceptions Can Make or Break Medical Drone Deliveries. Drones 2020, 4, 51. [Google Scholar] [CrossRef]
- Sula, L.; Sundaresan, T.K.; Langerová, M. Effects of storage and transport on the cultivability of mycobacteria. Bull. World Health Organ. 1960, 23, 635–651. [Google Scholar] [PubMed]
- Oakey, A.; Waters, T.; Zhu, W.; Royall, P.G.; Cherrett, T.; Courtney, P.; Majoe, D.; Jelev, N. Quantifying the Effects of Vibration on Medicines in Transit Caused by Fixed-Wing and Multi-Copter Drones. Drones 2021, 5, 22. [Google Scholar] [CrossRef]
- Plebani, M. The detection and prevention of errors in laboratory medicine. Ann. Clin. Biochem. 2010, 47, 101–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plebani, M. Towards a new paradigm in laboratory medicine: The five rights. Clin. Chem. Lab. Med. 2016, 54, 1881–1891. [Google Scholar] [CrossRef]
- Strzelecki, M.V. Not a Flight of Fancy, Drones Are Put to Use in Sample Transport. Crit. Values 2018, 11, 28–31. Available online: https://academic.oup.com/criticalvalues/article/11/2/28/4935012 (accessed on 30 January 2022). [CrossRef]
- Shepherd, E. Specimen collection 1: General principles and procedure for obtaining a midstream urine specimen. Nurs. Times 2017, 113, 45–47. [Google Scholar]
- Available online: https://stoptb.org/wg/gli/assets/documents/gli_mycobacteriology_lab_manual_web.pdf (accessed on 6 June 2022).
- Parsons, L.M.; Somoskövi, Á.; Gutierrez, C.; Lee, E.; Paramasivan, C.N.; Abimiku, A.L.; Spector, S.; Roscigno, G.; Nkengasong, J. Laboratory Diagnosis of Tuberculosis in Resource-Poor Countries: Challenges and Opportunities. Clin. Microbiol. Rev. 2011, 24, 314–350. [Google Scholar] [CrossRef] [Green Version]
- Ellappan, K.; Datta, S.; Muthuraj, M.; Lakshminarayanan, S.; Pleskunas, J.A.; Horsburgh, C.R., Jr.; Salgamee, P.; Hochbergd, N.; Sarkarb, S.; Ellner, J.J.; et al. Evaluation of factors influencing Mycobacterium tuberculosis complex recovery and contamination rates in MGIT 960. Indian J. Tuberc. 2021, 67, 466–471. [Google Scholar] [CrossRef]
Aircraft Attribute | Specification |
---|---|
Type | Fixed-wing, hybrid electric with vertical take-off and landing capabilities |
Max. payload weight | 3 kg |
Max. payload volume | 5362.5 cm3 |
Forward speed in flight | 115 km/h |
Max. distance travelled per charge | 135 km |
Aircraft battery endurance per charge | 90 min |
Max. surface temperatures withstood | 55 °C |
Rain conditions withstood | Safe to operate in light rain (IAW ICAO definition of <2.5 mm/h) indefinitely, and moderate rain (IAW ICAO definition of 2.5–10 mm/h) for up to 30 min |
Max. wind speed withstood | 50 km/h |
Description | Statistics |
---|---|
Total drone flights | 18 |
Average specimens per flight | 8.8 |
Average flight speed | 93 km/h |
Average flight time | 25 min |
Liquid Culture (MGIT) | Drone | Total | PPV (%) | NPV (%) | ||
---|---|---|---|---|---|---|
Positive | Negative | 100 | 100 | |||
Land | Positive | 19 | 0 | 19 | ||
Negative | 0 | 137 | 137 | |||
Total | 19 | 137 | 156 | |||
Agreement | 1.0 |
Solid Culture (LJ) | Drone | Total | VPP (%) | VPN (%) | ||
---|---|---|---|---|---|---|
Positive | Negative | 100 | 100 | |||
Land | Positive | 4 | 0 | 4 | ||
Negative | 0 | 147 | 147 | |||
Total | 4 | 147 | 151 | |||
Agreement | 1.0 |
MGIT Time to Positivity (Days) | Average | Median | Min | Max |
---|---|---|---|---|
Drone | 6.2 | 5.55 | 3.08 | 10.09 |
Land | 5.78 | 5.12 | 3.05 | 10.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malamule, D.; Moreira, S.; Madeira, C.; Lutucuta, C.; Ailstock, G.; Maxim, L.; Bechtel, R.; Defawe, O.; Viegas, S. Quality Analysis of Tuberculosis Specimens Transported by Drones versus Ground Transportation. Drones 2022, 6, 155. https://doi.org/10.3390/drones6070155
Malamule D, Moreira S, Madeira C, Lutucuta C, Ailstock G, Maxim L, Bechtel R, Defawe O, Viegas S. Quality Analysis of Tuberculosis Specimens Transported by Drones versus Ground Transportation. Drones. 2022; 6(7):155. https://doi.org/10.3390/drones6070155
Chicago/Turabian StyleMalamule, Diosdélio, Susana Moreira, Carla Madeira, Carla Lutucuta, Gabriella Ailstock, Luciana Maxim, Ruth Bechtel, Olivier Defawe, and Sofia Viegas. 2022. "Quality Analysis of Tuberculosis Specimens Transported by Drones versus Ground Transportation" Drones 6, no. 7: 155. https://doi.org/10.3390/drones6070155
APA StyleMalamule, D., Moreira, S., Madeira, C., Lutucuta, C., Ailstock, G., Maxim, L., Bechtel, R., Defawe, O., & Viegas, S. (2022). Quality Analysis of Tuberculosis Specimens Transported by Drones versus Ground Transportation. Drones, 6(7), 155. https://doi.org/10.3390/drones6070155