Offline Imagery Checks for Remote Drone Usage
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rocke, B.; Ruffell, A.; Donnelly, L. Drone aerial imagery for the simulation of a neonate burial based on the geoforensic search strategy (GSS). J. Forensic Sci. 2021, 66, 1506–1519. [Google Scholar] [CrossRef] [PubMed]
- Kugler, L. Real-world applications for drones. Commun. ACM 2019, 62, 19–21. [Google Scholar] [CrossRef] [Green Version]
- Ullah, F.; Sepasgozar, S.M.; Wang, C. A systematic review of smart real estate technology: Drivers of, and barriers to, the use of digital disruptive technologies and online platforms. Sustainability 2018, 10, 3142. [Google Scholar] [CrossRef] [Green Version]
- Appelbaum, D.; Nehmer, R.A. Using drones in internal and external audits: An exploratory framework. J. Emerg. Technol. Account. 2017, 14, 99–113. [Google Scholar] [CrossRef]
- la Cour-Harbo, A. Mass threshold for ‘harmless’ drones. Int. J. Micro Air Veh. 2017, 9, 77–92. [Google Scholar] [CrossRef] [Green Version]
- Ihsan, M.; Somantri, L.; Sugito, N.; Himayah, S.; Affriani, A. The Comparison of Stage and Result Processing of Photogrammetric Data Based on Online Cloud Processing. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019. [Google Scholar]
- Hinge, L.; Gundorph, J.; Ujang, U.; Azri, S.; Anton, F.; Rahman, A.A. Comparative analysis of 3D photogrammetry modeling software packages for drones survey. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Park, S. Digital inequalities in rural Australia: A double jeopardy of remoteness and social exclusion. J. Rural Stud. 2017, 54, 399–407. [Google Scholar] [CrossRef]
- Adeleye, N.; Eboagu, C. Evaluation of ICT development and economic growth in Africa. Netnomics Econ. Res. Electron. Netw. 2019, 20, 31–53. [Google Scholar] [CrossRef]
- Bánhidi, Z. The impact of broadband networks on growth and development in South America. Period. Polytech. Soc. Manag. Sci. 2021, 29, 33–39. [Google Scholar] [CrossRef]
- Lyons, M.B.; Brandis, K.J.; Murray, N.J.; Wilshire, J.H.; McCann, J.A.; Kingsford, R.T.; Callaghan, C.T. Monitoring large and complex wildlife aggregations with drones. Methods Ecol. Evol. 2019, 10, 1024–1035. [Google Scholar] [CrossRef]
- Vujičić, M.D.; Kennell, J.; Stankov, U.; Gretzel, U.; Vasiljević, Đ.A.; Morrison, A.M. Keeping up with the drones! Techno-social dimensions of tourist drone videography. Technol. Soc. 2022, 68, 101838. [Google Scholar] [CrossRef]
- Jiménez López, J.; Mulero-Pázmány, M. Drones for conservation in protected areas: Present and future. Drones 2019, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Hemerly, E.M. Automatic georeferencing of images acquired by UAV’s. Int. J. Autom. Comput. 2014, 11, 347–352. [Google Scholar] [CrossRef] [Green Version]
- Ancin-Murguzur, F.J.; Munoz, L.; Monz, C.; Hausner, V.H. Drones as a tool to monitor human impacts and vegetation changes in parks and protected areas. Remote Sens. Ecol. Conserv. 2020, 6, 105–113. [Google Scholar] [CrossRef]
- Hung, I.-K.; Unger, D.; Kulhavy, D.; Zhang, Y. Positional precision analysis of orthomosaics derived from drone captured aerial imagery. Drones 2019, 3, 46. [Google Scholar] [CrossRef] [Green Version]
- PIX4D. Troubleshooting—PIX4Dcapture. Troubleshooting 2021. Available online: https://support.pix4d.com/hc/en-us/articles/115004119343-Troubleshooting-PIX4Dcapture (accessed on 8 September 2022).
- Drone Deploy, Drone Deploy. California, United States. 2022.
- PIX4D SA PIX4Dcapture. 2019. Available online: https://www.pix4d.com/product/pix4dcapture (accessed on 3 November 2022).
- Vacca, G. WEB Open Drone Map (WebODM) a Software Open Source to Photogrammetry Process. In Proceedings of the Fig Working Week 2020—Smart Surveyors for Land and Water Management, Amsterdam, The Netherlands, 10–14 May 2020. [Google Scholar]
- Schofield, G.; Katselidis, K.A.; Lilley, M.K.; Reina, R.D.; Hays, G.C. Detecting elusive aspects of wildlife ecology using drones: New insights on the mating dynamics and operational sex ratios of sea turtles. Funct. Ecol. 2017, 31, 2310–2319. [Google Scholar] [CrossRef] [Green Version]
- Rush, G.P.; Clarke, L.E.; Stone, M.; Wood, M.J. Can drones count gulls? Minimal disturbance and semiautomated image processing with an unmanned aerial vehicle for colony-nesting seabirds. Ecol. Evol. 2018, 8, 12322–12334. [Google Scholar] [CrossRef]
- Francis, R.; Kingsford, R.; Brandis, K. Using drones and citizen science counts to track colonial waterbird breeding, an indicator for ecosystem health on the Chobe River, Botswana. Glob. Ecol. Conserv. 2022, 38, e02231. [Google Scholar] [CrossRef]
- Evans, L.J.; Jones, T.H.; Pang, K.; Saimin, S.; Goossens, B. Spatial ecology of estuarine crocodile (Crocodylus porosus) nesting in a fragmented landscape. Sensors 2016, 16, 1527. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing; 4.1.0; R Core Team: Vienna, Austria, 2022. [Google Scholar]
- Dunnington, D.H.; Harvey, P. exifr: EXIF Image Data in R; R Package Version 0.3.2; 2021; Available online: https://cran.r-project.org/web/packages/exifr/exifr.pdf (accessed on 3 November 2022).
- Ooms, J. magick: Advanced Graphics and Image-Processing in R; R Package Version 2.7.3; 2021; Available online: https://ropensci.org/blog/2017/08/15/magick-10/ (accessed on 3 November 2022).
- PIX4D SA PIX4Dmapper. 2022. Available online: https://www.pix4d.com/product/pix4dmapper-photogrammetry-software (accessed on 3 November 2022).
- Junda, J.; Greene, E.; Bird, D.M. Proper flight technique for using a small rotary-winged drone aircraft to safely, quickly, and accurately survey raptor nests. J. Unmanned Veh. Syst. 2015, 3, 222–236. [Google Scholar] [CrossRef]
- Kannan, R.J.; Yadav, K. Drone Routing Techniques for Surveying in Urban Areas. Rev. Int. Geogr. Educ. Online 2021, 11, 4157–4167. [Google Scholar]
- Lyons, M.; Brandis, K.; Wilshire, J.; Murray, N.; McCann, J.; Kingsford, R.; Callaghan, C. A protocol for using drones to assist monitoring of large breeding bird colonies. EcovoRxiv 2019. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Jiménez, S.I.; Ojeda-Bustamante, W.; Marcial-Pablo, M.d.J.; Enciso, J. Digital terrain models generated with low-cost UAV photogrammetry: Methodology and accuracy. ISPRS Int. J. Geo-Inf. 2021, 10, 285. [Google Scholar] [CrossRef]
- Sieberth, T.; Wackrow, R.; Chandler, J. Motion blur disturbs—The influence of motion-blurred images in photogrammetry. Photogramm. Rec. 2014, 29, 434–453. [Google Scholar] [CrossRef]
- Khan, Z.; Miklavcic, S.J. An automatic field plot extraction method from aerial orthomosaic images. Front. Plant Sci. 2019, 10, 683. [Google Scholar] [CrossRef] [PubMed]
- Hinzmann, T.; Schönberger, J.L.; Pollefeys, M.; Siegwart, R. Mapping on the fly: Real-time 3D dense reconstruction, digital surface map and incremental orthomosaic generation for unmanned aerial vehicles. In Field and Service Robotics; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Francis, R.J.; Lyons, M.B.; Kingsford, R.T.; Brandis, K.J. Counting mixed breeding aggregations of animal species using drones: Lessons from waterbirds on semi-automation. Remote Sens. 2020, 12, 1185. [Google Scholar] [CrossRef] [Green Version]
- Chabot, D.; Francis, C.M. Computer-automated bird detection and counts in high-resolution aerial images: A review. J. Field Ornithol. 2016, 87, 343–359. [Google Scholar] [CrossRef]
- Ferrari, R.; Lachs, L.; Pygas, D.R.; Humanes, A.; Sommer, B.; Figueira, W.F.; Edwards, A.J.; Bythell, J.C.; Guest, J.R. Photogrammetry as a tool to improve ecosystem restoration. Trends Ecol. Evol. 2021, 36, 1093–1101. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francis, R.J.; Brandis, K.J.; McCann, J.A. Offline Imagery Checks for Remote Drone Usage. Drones 2022, 6, 395. https://doi.org/10.3390/drones6120395
Francis RJ, Brandis KJ, McCann JA. Offline Imagery Checks for Remote Drone Usage. Drones. 2022; 6(12):395. https://doi.org/10.3390/drones6120395
Chicago/Turabian StyleFrancis, Roxane J., Kate J. Brandis, and Justin A. McCann. 2022. "Offline Imagery Checks for Remote Drone Usage" Drones 6, no. 12: 395. https://doi.org/10.3390/drones6120395
APA StyleFrancis, R. J., Brandis, K. J., & McCann, J. A. (2022). Offline Imagery Checks for Remote Drone Usage. Drones, 6(12), 395. https://doi.org/10.3390/drones6120395