# Coverage Strategy for Target Location in Marine Environments Using Fixed-Wing UAVs

^{*}

## Abstract

**:**

## 1. Introduction

- Definition of the target area. Since the weather conditions in maritime environments are usually inaccurate or unknown and the air and ocean currents can drift the debris away from their last known position, it is necessary to establish a method to define the search target area.
- Design of a search path. Even if the target area is correctly defined, there is no optimal solution for the design of the search trajectory problem. In this work, the goal is to compute paths along the whole searching area that cover the points with the higher probability of containment as fast as possible.

## 2. Materials and Methods

#### 2.1. Target Position Estimation

#### 2.2. Coverage Path Planning Algorithm

## 3. Results

#### Comparison with Other Optimization Algorithms

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- ATSB. The Operational Search for MH370. In Australian Safety Transport Bureau Transport Safety Report; Australian Transport Safety Bureau: Canberra, Australia, 2017; pp. 1–440. Available online: https://apo.org.au/node/112656 (accessed on 5 October 2021).
- Miron, P.; Beron-Vera, F.J.; Olascoaga, M.J.; Koltai, P. Markov-chain-inspired search for MH370. Chaos
**2019**, 29, 041105. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Garcia-Garrido, V.J.; Mancho, A.M.; Wiggins, S.; Mendoza, C. A dynamical systems approach to the surface search for debris associated with the disappearance of flight MH370. Nonlinear Process. Geophys.
**2015**, 22, 701–712. [Google Scholar] [CrossRef] [Green Version] - Trinanes, J.A.; Olascoaga, M.J.; Goni, G.J.; Maximenko, N.A.; Griffin, D.A.; Hafner, J. Analysis of flight MH370 potential debris trajectories using ocean observations and numerical model results. J. Oper. Oceanogr.
**2016**, 9, 126–138. [Google Scholar] [CrossRef] - Wang, X.; Yang, L.T.; Meng, D.; Dong, M.; Ota, K.; Wang, H. Multi-UAV cooperative localization for marine targets based on weighted subspace fitting in SAGIN environment. IEEE Internet Things J.
**2021**. [Google Scholar] [CrossRef] - Xiao, X.; Dufek, J.; Woodbury, T.; Murphy, R. Uav assisted usv visual navigation for marine mass casualty incident response. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 6105–6110. [Google Scholar]
- Yilmaz, A.; Javed, O.; Shah, M. Object tracking: A survey. ACM Comput. Surv.
**2006**, 38, 13. [Google Scholar] [CrossRef] - Ward, S.; Hensler, J.; Alsalam, B.; Gonzalez, L.F. Autonomous UAVs wildlife detection using thermal imaging, predictive navigation and computer vision. In Proceedings of the 2016 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2016. [Google Scholar] [CrossRef] [Green Version]
- Ko, A.; Lau, H.Y.K. Robot assisted emergency search and rescue system with a wireless sensor network. Int. J. Adv. Sci. Technol.
**2009**, 3, 69–78. [Google Scholar] - Chen, D.; Liu, Z.; Wang, L.; Dou, M.; Chen, J.; Li, H. Natural disaster monitoring with wireless sensor networks: A case study of data-intensive applications upon low-cost scalable systems. Mob. Netw. Appl.
**2013**, 18, 651–663. [Google Scholar] [CrossRef] - Alotaibi, E.T.; Alqefari, S.S.; Koubaa, A. LSAR: Multi-UAV Collaboration for Search and Rescue Missions. IEEE Access
**2019**, 7, 55817–55832. [Google Scholar] [CrossRef] - Kim, M.H.; Baik, H.; Lee, S. Response threshold model based UAV search planning and task allocation. J. Intell. Robot. Syst. Theory Appl.
**2014**, 75, 625–640. [Google Scholar] [CrossRef] - Pugh, J.; Martinoli, A. Inspiring and modeling multi-robot search with particle swarm optimization. In Proceedings of the 2007 IEEE Swarm Intelligence Symposium, SIS 2007, Honolulu, HI, USA, 1–5 April 2007; pp. 332–339. [Google Scholar] [CrossRef] [Green Version]
- Di Franco, C.; Buttazzo, G. Energy-aware coverage path planning of UAVs. In Proceedings of the 2015 IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2015, Vila Real, Portugal, 8–10 April 2015; pp. 111–117. [Google Scholar] [CrossRef] [Green Version]
- Galceran, E.; Carreras, M. A survey on coverage path planning for robotics. Robot. Auton. Syst.
**2013**, 61, 1258–1276. [Google Scholar] [CrossRef] [Green Version] - Ivić, S.; Crnković, B.; Arbabi, H.; Loire, S.; Clary, P.; Mezić, I. Search strategy in a complex and dynamic environment: The MH370 case. Sci. Rep.
**2020**, 10, 19640. [Google Scholar] [CrossRef] [PubMed] - Lagerloef, G.; Bonjean, F.; Dohan, K. Ocean Surface Current Analysis (OSCAR) Third Degree Resolution User’s Handbook; California Institute of Technology Contract with the National Aeronautics and Space Administration and the National Oceanic and Atmospheric Administration. 2009. Available online: https://www.cen.uni-hamburg.de/en/icdc/data/ocean/docs-ocean/users-guide-oscar-vel1992-2015.pdf (accessed on 5 October 2021).
- Niiler, P. The World Ocean surface circulation. Int. Geophys.
**2001**, 77, 193–204. [Google Scholar] - Reynolds, D. Gaussian Mixture Models. Encycl. Biom.
**2009**, 741, 659–663. [Google Scholar] - Fit Gaussian Mixture Model to Data. (n.d.). Available online: https://es.mathworks.com/help/stats/fitgmdist.html?lang=en (accessed on 14 May 2021).
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Glob. Optim.
**1997**, 11, 341–359. [Google Scholar] [CrossRef] - Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Pham, D.; Ghanbarzadeh, A.; Koc, E.; Otri, S.; Rahim, S.; Zaidi, M. The Bees Algorithm; Technical Note; Manufacturing Engineering Centre, Cardiff University: Cardiff, UK, 2005. [Google Scholar]
- Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report, Technical Report-tr06; Erciyes University, Engineering Faculty, Computer Engineering Department: Kayseri, Turkey, 2005. [Google Scholar]
- Yarpiz—Academic Source Codes and Tutorials. Available online: https://yarpiz.com/ (accessed on 30 August 2021).

**Figure 2.**Data fitted to Gaussian mixture model [20].

**Figure 5.**Probability of containment map obtained by fitting the drifter particle positions to a Gaussian distribution.

**Figure 14.**Evolution of the mean POC as the number of members of the population and number of iterations increase.

**Figure 17.**Evolution of the POC/time ratio as the number of members of the population and number of iterations increase.

Number of Iterations | ||||||
---|---|---|---|---|---|---|

5 | 10 | 15 | 25 | 50 | ||

Time | Mean | 0.2301 | 0.4221 | 0.6157 | 0.9981 | 1.8952 |

Std | 0.013 | 0.0157 | 0.0197 | 0.0400 | 0.0295 | |

POC $\times \phantom{\rule{3.33333pt}{0ex}}{10}^{5}$ | Mean | 5.0197 | 5.1536 | 5.2459 | 5.3407 | 5.4704 |

Std | 0.2767 | 0.2267 | 0.2647 | 0.2456 | 0.3204 | |

Angle | Mean | 10.33 | 12.83 | 11.16 | 14.22 | 16.97 |

Std | 46.75 | 46.35 | 48.55 | 48.28 | 47.72 |

**Table 2.**Simulation results for an incrementing number of members of the population of the DE algorithm.

Number of Population Members | ||||||
---|---|---|---|---|---|---|

5 | 10 | 15 | 25 | 50 | ||

Time | Mean | 0.2301 | 0.446 | 0.6705 | 1.1309 | 2.2447 |

Std | 0.013 | 0.0065 | 0.0103 | 0.0504 | 0.0145 | |

POC $\times \phantom{\rule{3.33333pt}{0ex}}{10}^{5}$ | Mean | 5.0197 | 5.0171 | 5.0209 | 5.0343 | 5.036 |

Std | 0.2767 | 0.2919 | 0.2878 | 0.3 | 0.2725 | |

Angle | Mean | 10.33 | 12.62 | 11.25 | 11.39 | 11.53 |

Std | 46.75 | 46.97 | 47.47 | 46.07 | 48.23 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Muñoz, J.; López, B.; Quevedo, F.; Monje, C.A.; Garrido, S.; Moreno, L.E.
Coverage Strategy for Target Location in Marine Environments Using Fixed-Wing UAVs. *Drones* **2021**, *5*, 120.
https://doi.org/10.3390/drones5040120

**AMA Style**

Muñoz J, López B, Quevedo F, Monje CA, Garrido S, Moreno LE.
Coverage Strategy for Target Location in Marine Environments Using Fixed-Wing UAVs. *Drones*. 2021; 5(4):120.
https://doi.org/10.3390/drones5040120

**Chicago/Turabian Style**

Muñoz, Javier, Blanca López, Fernando Quevedo, Concepción A. Monje, Santiago Garrido, and Luis E. Moreno.
2021. "Coverage Strategy for Target Location in Marine Environments Using Fixed-Wing UAVs" *Drones* 5, no. 4: 120.
https://doi.org/10.3390/drones5040120