Design and Implementation of Intelligent Inspection and Alarm Flight System for Epidemic Prevention
Abstract
:1. Introduction
- (1)
- Based on the quadrotor UAV, an intelligent inspection and warning flight system for epidemic prevention was designed;
- (2)
- Based on a convolutional neural network, a dense crowd image analysis and personnel number estimation technology was used to estimate and analyze the crowd in the inspection area online, which provides convenient and accurate evaluation information for decision makers;
- (3)
- Face mask detection methods based on deep learning were used to detect the face of pedestrians on the ground and identify whether they were wearing masks;
- (4)
- Based on intelligent voice warning technology, the system can avoid personal contact when reminding, dissuading, and publicizing the policy regarding face masks to ensure strong promotion of epidemic prevention and control.
2. Related Work
3. Our Approach
3.1. Hardware Design
3.2. Software Design
3.2.1. UAV Navigation Control Module
3.2.2. Crowd Density Detection Module
3.2.3. Face Mask Detection Module
4. Experimental Results and Discussion
4.1. Crowd Density Test
4.2. Face Mask Detection Test
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhan, J.; Liu, Q.S.; Sun, Z.; Zhou, Q.; Hu, L.; Qu, G.; Zhang, J.; Zhao, B.; Jiang, G. Environmental impacts on the transmission and evolution of COVID-19 combing the knowledge of pathogenic respiratory coronaviruses. Environ. Pollut. 2020, 267, 115621. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, S.P.; Meng, S.; Wu, Y.J.; Mao, Y.P.; Ye, R.X.; Wang, Q.Z.; Sun, C.; Sylvia, S.; Rozelle, S.; Raat, H.; et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: A scoping review. Infect. Dis. Poverty 2020, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Liu, Z.; Shi, J.; Wu, G.; Chen, C. Optimization of Base Location and Patrol Routes for Unmanned Aerial Vehicles in Border Intelligence, Surveillance, and Reconnaissance. J. Adv. Transp. 2019, 2019, 9063232. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Geeves, M.; Alsalam, B.; Gonzalez, F. Open source computer-vision based guidance system for UAVs on-board decision making. IEEE Aerosp. Conf. Proc. 2016, 2016, 1–5. [Google Scholar] [CrossRef]
- Guan, X.; Huang, J.; Tang, T. Robot vision application on embedded vision implementation with digital signal processor. Int. J. Adv. Robot. Syst. 2020, 17, 17. [Google Scholar] [CrossRef] [Green Version]
- Khuc, T.; Nguyen, T.A.; Dao, H.; Catbas, F.N. Swaying displacement measurement for structural monitoring using computer vision and an unmanned aerial vehicle. Meas. J. Int. Meas. Confed. 2020, 159, 107769. [Google Scholar] [CrossRef]
- Barisic, A.; Car, M.; Bogdan, S. Vision-based system for a real-time detection and following of UAV. Int. Work. Res. Educ. Dev. Unmanned. Aer. Syst. RED-UAS 2019, 2019, 156–159. [Google Scholar] [CrossRef]
- Yang, X.; Liao, L.; Yang, Q.; Sun, B.; Xi, J. Limited-energy output formation for multiagent systems with intermittent interactions. J. Frankl. Inst. 2021. [Google Scholar] [CrossRef]
- Xi, J.; Wang, C.; Yang, X.; Yang, B. Limited-budget output consensus for descriptor multiagent systems with energy constraints. IEEE Trans. Cybern 2020, 50, 4585–4598. [Google Scholar] [CrossRef] [Green Version]
- Xi, J.; Wang, L.; Zheng, J.; Yang, X. Energy-constraint formation for multiagent systems with switching interaction topologies. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 2442–2454. [Google Scholar] [CrossRef]
- Ağalar, C.; Öztürk Engin, D. Protective measures for covid-19 for healthcare providers and laboratory personnel. Turkish J. Med. Sci. 2020, 50, 578–584. [Google Scholar] [CrossRef]
- Wu, Q.; Zhou, Y.; Wu, X.; Liang, G.; Ou, Y.; Sun, T. A Real-time Running Detection System for UAV Imagery based on Optical Flow and Deep Convolutional Networks. IET Intell. Transp. Syst. 2020, 14, 278–287. [Google Scholar] [CrossRef]
- Athilingam, R.; Kumar, K.S.; Thillainayagi, R.; Hameedha, N.A. Moving Target Detection Using Adaptive Background Segmentation Technique for UAV based Aerial Surveillance. J. Sci. Ind. Res. 2014, 73, 247–250. [Google Scholar]
- Briese, C.; Seel, A.; Andert, F. Vision-based detection of non-cooperative UAVs using frame differencing and temporal filter. In Proceedings of the 2018 International Conference on Unmanned Aircraft Systems, Dallas, TX, USA, 12–15 June 2018; pp. 606–613. [Google Scholar]
- Xu, X.; Duan, H.; Guo, Y.; Deng, Y. A Cascade Adaboost and CNN Algorithm for Drogue Detection in UAV Autonomous Aerial Refueling. Neurocomputing 2020, 408, 121–134. [Google Scholar] [CrossRef]
- Xia, L.; Zhang, R.; Chen, L.; Huang, Y.; Xu, G.; Wen, Y.; Yi, T. Monitor Cotton Budding Using SVM and UAV Images. Appl. Sci. 2019, 9, 4312. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Mei, Y.; Chu, H.; Chang, Z.; He, Y.; Zhan, H. Using infrared HOG-based pedestrian detection for outdoor autonomous searching UAV with embedded system. In Proceedings of the Ninth International Conference on Graphic and Image Processing, Chengdu, China, 12–14 December 2018. [Google Scholar]
- Qiu, S.; Wen, G.; Fan, Y. Occluded Object Detection in High-Resolution Remote Sensing Images Using Partial Configuration Object Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1909–1925. [Google Scholar] [CrossRef]
- Sindagi, V.A.; Patel, V.M. A Survey of Recent Advances in CNN-based Single Image Crowd Counting and Density Estimation. Pattern Recognit. Lett. 2017, 107, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef] [Green Version]
- Lu, R.; Yang, X.; Li, W.; Fan, J.; Li, D.; Jing, X. Robust Infrared Small Target Detection via Multidirectional Derivative-Based Weighted Contrast Measure. IEEE Geosci. Remote Sens. Lett. 2020. [Google Scholar] [CrossRef]
- Lu, R.; Yang, X.; Jing, X.; Chen, L.; Fan, J.; Li, W.; Li, D. Infrared Small Target Detection Based on Local Hypergraph Dissimilarity Measure. IEEE Geosci. Remote. Sens. Lett. 2020. [Google Scholar] [CrossRef]
- Fang, L.; Zhiwei, W.; Anzhe, Y.; Xiao, H. Multi-Scale Feature Fusion Based Adaptive Object Detection for UAV. Acta Opt. Sin. 2020, 40, 127–136. [Google Scholar] [CrossRef]
- Lai, Y.C.; Huang, Z.Y. Detection of a Moving UAV Based on Deep Learning-Based Distance Estimation. Remote. Sens. 2020, 12, 3035. [Google Scholar] [CrossRef]
- Avola, D.; Cinque, L.; Diko, A.; Fagioli, A.; Foresti, G.L.; Mecca, A.; Pannone, D.; Piciarelli, C. MS-Faster R-CNN: Multi-Stream Backbone for Improved Faster R-CNN Object Detection and Aerial Tracking from UAV Images. Remote Sens. 2021, 13, 1670. [Google Scholar] [CrossRef]
- Yingjie, L.; Fengbao, Y.; Peng, H. Parallel FPN Algorithm Based on Cascade R-CNN for Object Detection from UAV Aerial Images. Laser Optoelectron. Prog. 2020, 57, 201505. [Google Scholar] [CrossRef]
- Yang, Y.; Gong, H.; Wang, X.; Sun, P. Aerial target tracking algorithm based on faster R-CNN combined with frame differencing. Aerospace 2017, 4, 32. [Google Scholar] [CrossRef] [Green Version]
- Boudjit, K.; Ramzan, N. Human detection based on deep learning YOLO-v2 for real-time UAV applications. J. Exp. Theor. Artif. Intell. 2021, 1–18. [Google Scholar] [CrossRef]
- Sadykova, D.; Pernebayeva, D.; Bagheri, M.; James, A. IN-YOLO: Real-Time Detection of Outdoor High Voltage Insulators Using UAV Imaging. IEEE Trans. Power Deliv. 2019, 35, 1599–1601. [Google Scholar] [CrossRef]
- Yan, B.; Fan, P.; Lei, X.; Liu, Z.; Yang, F. A Real-Time Apple Targets Detection Method for Picking Robot Based on Improved YOLOv5. Remote Sens. 2021, 13, 1619. [Google Scholar] [CrossRef]
- Ding, L.; Xu, X.; Cao, Y.; Zhai, G.; Yang, F.; Qian, L. Detection and tracking of infrared small target by jointly using SSD and pipeline filter. Digit. Signal Process. 2020, 110, 1–9. [Google Scholar] [CrossRef]
- Li, G.; Ren, P.; Lyu, X.; Zhang, H. Real-Time Top-View People Counting Based on a Kinect and NVIDIA Jetson TK1 Integrated Platform. In Proceedings of the 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), Barcelona, Spain, 15 December 2016; IEEE: Piscataway, NJ, USA, 2017; pp. 468–473. [Google Scholar]
- Wood, S.U.; Rouat, J. Real-time Speech Enhancement with GCC-NMF: Demonstration on the Raspberry Pi and NVIDIA Jetson. In Proceedings of the Interspeech 2017 Show and Tell Demonstrations, Stockholm, Sweden, 20–24 August; 2017; pp. 2048–2049. [Google Scholar]
- Mittal, S. A Survey on optimized implementation of deep learning models on the NVIDIA Jetson platform. J. Syst. Archit. 2019, 97, 428–442. [Google Scholar] [CrossRef]
- Jang, Y.; Gunes, H.; Patras, I. Registration-free Face-SSD: Single shot analysis of smiles, facial attributes, and affect in the wild. Comput. Vis. Image Underst. 2019, 182, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Hwang, C.L.; Wang, D.S.; Weng, F.C.; Lai, S.L. Interactions between Specific Human and Omnidirectional Mobile Robot Using Deep Learning Approach: SSD-FN-KCF. IEEE Access 2020, 8, 41186–41200. [Google Scholar] [CrossRef]
- Fan, H.; Ling, H. SANet: Structure-Aware Network for Visual Tracking. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Work, Honolulu, HI, USA, 21–26 July 2017; pp. 2217–2224. [Google Scholar] [CrossRef] [Green Version]
- Channappayya, S.S.; Bovik, A.C.; Heath, R.W. Rate bounds on SSIM index of quantized images. IEEE Trans. Image Process. 2008, 17, 1624–1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fei, L.; Yan, L.; Chen, C.; Ye, Z.; Zhou, J. OSSIM: An Object-Based Multiview Stereo Algorithm Using SSIM Index Matching Cost. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6937–6949. [Google Scholar] [CrossRef]
- Sun, C.; Ai, Y.; Wang, S.; Zhang, W. Mask-guided SSD for small-object detection. Appl. Intell. 2020, 51, 3311–3322. [Google Scholar] [CrossRef]
- Hu, K.; Lu, F.; Lu, M.; Deng, Z.; Liu, Y. A Marine Object Detection Algorithm Based on SSD and Feature Enhancement. Complexity 2020, 2020, 5476142. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Shuang, F.; Gao, F.; Zhou, X.; Chen, X. Issd: Improved ssd for insulator and spacer online detection based on uav system. Sensors 2020, 20, 6961. [Google Scholar] [CrossRef] [PubMed]
Algorithm | Characteristic |
---|---|
Optical flow algorithm | It can detect the moving target and is susceptible to interference by noise, light source, and other factors |
Matching algorithm | It needs a lot of prior knowledge and design experience, and the feature calculation is large |
Background subtraction algorithm | When the detection scene is fixed, it is easy to implement and sensitive to changes in external dynamic scene |
Frame difference algorithm | When the moving speed of the target is very slow or stationary, it is easy to produce misjudgments |
Deep learning algorithm | The target dataset is needed for training, so the detection accuracy is high and the real-time performance is good |
Convolution Layer | Feature Map Size | Anchor Size | Anchor Aspect Ratio |
---|---|---|---|
first floor | 33 × 33 | 0.04, 0.056 | 1, 0.62, 0.42 |
second floor | 17 × 17 | 0.08, 0.11 | |
third layer | 9 × 9 | 0.16, 0.22 | |
fourth floor | 5 × 5 | 0.32, 0.45 | |
fifth floor | 3 × 3 | 0.64, 0.72 |
Part A | Part B | |||
---|---|---|---|---|
Method | MAE | MSE | MAE | MSE |
MCNN | 110.2 | 173.2 | 26.4 | 41.3 |
Cascaded-MTL | 101.3 | 152.4 | 20.1 | 31.1 |
Switch-CNN | 90.4 | 135 | 21.6 | 33.4 |
CP-CNN | 73.6 | 106.4 | 20.1 | 30.1 |
CSRNet | 68.2 | 115 | 10.6 | 16 |
SANet | 67 | 104.5 | 8.4 | 13.6 |
Method | mAP/% | FPS | Precision/% | Recall/% |
---|---|---|---|---|
YOLOv3-tiny | 58.47 | 20.1 | 68.2 | 30.2 |
YOLO Nano | 54.85 | 22.7 | 66.3 | 35.2 |
PVA-Net | 51.67 | 23.7 | 67.5 | 36.5 |
Our | 61.42 | 22.5 | 70.2 | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Yang, X.; Lu, R.; Xie, X.; Li, W. Design and Implementation of Intelligent Inspection and Alarm Flight System for Epidemic Prevention. Drones 2021, 5, 68. https://doi.org/10.3390/drones5030068
Fan J, Yang X, Lu R, Xie X, Li W. Design and Implementation of Intelligent Inspection and Alarm Flight System for Epidemic Prevention. Drones. 2021; 5(3):68. https://doi.org/10.3390/drones5030068
Chicago/Turabian StyleFan, Jiwei, Xiaogang Yang, Ruitao Lu, Xueli Xie, and Weipeng Li. 2021. "Design and Implementation of Intelligent Inspection and Alarm Flight System for Epidemic Prevention" Drones 5, no. 3: 68. https://doi.org/10.3390/drones5030068
APA StyleFan, J., Yang, X., Lu, R., Xie, X., & Li, W. (2021). Design and Implementation of Intelligent Inspection and Alarm Flight System for Epidemic Prevention. Drones, 5(3), 68. https://doi.org/10.3390/drones5030068