Humidity Impact on Thermal Conductivity Sensors †
Abstract
:1. Introduction
2. Materials and Methods
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Melling, A.; Noppenberger, S.; Still, M.; Venzke, H. Interpolation Correlations for Fluid Properties of Humid Air in the Temperature Range 100 °C to 200 °C. J. Phys. Chem. Ref. Data 1997, 26, 1111–1123. [Google Scholar] [CrossRef]
- Tsilingiris, P.T. Thermophysical and Transport Properties of Humid Air at Temperature Range between 0 and 100 °C. Energy Convers. Manag. 2008, 49, 1098–1110. [Google Scholar] [CrossRef]
- Udoetok, E.S. Thermal Conductivity of Binary Mixtures of Gases. Front. Heat Mass Transf. FHMT 2013, 4, 023008. [Google Scholar] [CrossRef]
- Emperhoff, S.; Eberl, M.; Barraza, J.P.; Brandl, F.; Wöllenstein, J. Differential Thermal Conductivity Hydrogen Sensor. In Proceedings of the SMSI 2023, Nürnberg, Germany, 8–11 May 2023. [Google Scholar]
- Mason, E.A.; Saxena, S.C. Approximate Formula for the Thermal Conductivity of Gas Mixtures. Phys. Fluids 1958, 1, 361. [Google Scholar] [CrossRef]
- Zhukov, V.P.; Pätz, M. On Thermal Conductivity of Gas Mixtures Containing Hydrogen. Heat Mass Transf. 2017, 53, 2219–2222. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emperhoff, S.; Eberl, M.; Dwertmann, T.; Wöllenstein, J. Humidity Impact on Thermal Conductivity Sensors. Proceedings 2024, 97, 93. https://doi.org/10.3390/proceedings2024097093
Emperhoff S, Eberl M, Dwertmann T, Wöllenstein J. Humidity Impact on Thermal Conductivity Sensors. Proceedings. 2024; 97(1):93. https://doi.org/10.3390/proceedings2024097093
Chicago/Turabian StyleEmperhoff, Sophie, Matthias Eberl, Tim Dwertmann, and Jürgen Wöllenstein. 2024. "Humidity Impact on Thermal Conductivity Sensors" Proceedings 97, no. 1: 93. https://doi.org/10.3390/proceedings2024097093
APA StyleEmperhoff, S., Eberl, M., Dwertmann, T., & Wöllenstein, J. (2024). Humidity Impact on Thermal Conductivity Sensors. Proceedings, 97(1), 93. https://doi.org/10.3390/proceedings2024097093