TinyML with Meta-Learning on Microcontrollers for Air Pollution Prediction †
Abstract
:1. Introduction
2. Materials and Methods
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shafique, M.; Theocharides, T.; Reddy, V.J.; Murmann, B. TinyML: Current Progress, Research Challenges, and Future Roadmap. In Proceedings of the 2021 58th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 5–9 December 2021; pp. 1303–1306. [Google Scholar]
- Giordano, M.; Baumann, N.; Crabolu, M.; Fischer, R.; Bellusci, G.; Magno, M. Design and Performance Evaluation of an Ultralow-Power Smart IoT Device with Embedded TinyML for Asset Activity Monitoring. IEEE Trans. Instrum. Meas. 2022, 71, 1–11. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Ropkins, K. Openair—An R Package for Air Quality Data Analysis. Environ. Model. Softw. 2012, 27–28, 52–61. [Google Scholar] [CrossRef]
Station | NO2 (µg/m3) | PM2.5 (µg/m3) | ||||
---|---|---|---|---|---|---|
Base-1 | Base-2 | Stacked | Base-1 | Base-2 | Stacked | |
BEX | 5.460 | 5.451 | 5.374 | 2.702 | 2.847 | 2.597 |
HORS | 5.435 | 5.416 | 5.401 | 3.431 | 3.679 | 3.234 |
KC1 | 5.136 | 5.073 | 4.962 | 1.656 | 1.662 | 1.609 |
LON6 | 4.530 | 4.447 | 4.308 | 2.147 | 2.185 | 1.873 |
MY1 | 8.826 | 8.979 | 8.759 | 2.556 | 2.583 | 2.526 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wardana, I.N.K.; Fahmy, S.A.; Gardner, J.W. TinyML with Meta-Learning on Microcontrollers for Air Pollution Prediction. Proceedings 2024, 97, 163. https://doi.org/10.3390/proceedings2024097163
Wardana INK, Fahmy SA, Gardner JW. TinyML with Meta-Learning on Microcontrollers for Air Pollution Prediction. Proceedings. 2024; 97(1):163. https://doi.org/10.3390/proceedings2024097163
Chicago/Turabian StyleWardana, I Nyoman Kusuma, Suhaib A. Fahmy, and Julian W. Gardner. 2024. "TinyML with Meta-Learning on Microcontrollers for Air Pollution Prediction" Proceedings 97, no. 1: 163. https://doi.org/10.3390/proceedings2024097163
APA StyleWardana, I. N. K., Fahmy, S. A., & Gardner, J. W. (2024). TinyML with Meta-Learning on Microcontrollers for Air Pollution Prediction. Proceedings, 97(1), 163. https://doi.org/10.3390/proceedings2024097163