Biaxial Piezoelectrically Driven MEMS Mirror with Large Design Flexibility †
Abstract
:1. Introduction
2. Design Concept and FEM Simulations
3. Experimental Results
4. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gu-Stoppel, S.; Giese, T.; Quenzer, H.J.; Hofmann, U.; Benecke, W. Piezoelectrically Driven and Sensed Micromirrors with Extremely Large Scan Angles and Precise Closed-Loop Control. Proceedings 2017, 1, 561. [Google Scholar] [CrossRef]
- Hofmann, U.; Senger, F.; Janes, J.; Mallas, C.; Stenchly, V.; von Wantoch, T.; Quenzer, H.-J.; Weiss, M. Wafer-level vacuum-packaged two-axis MEMS scanning mirror for pico-projector application. Proc. SPIE 2014, 8977, 47–60. [Google Scholar]
- Wysocki, L.; Ratzmann, L.; Schütt, P.; Albers, J.; Wille, G.; Gu-Stoppel, S. Efficient piezoelectric gimbal-less MEMS-mirror with large design flexibility. Proc. SPIE 2023, 12434, 77–86. [Google Scholar]
- Fichtner, S.; Wolff, N.; Krishnamurthy, G.; Petraru, A.; Bohse, S.; Lofink, F.; Chemnitz, S.; Kohlstedt, H.; Kienle, L.; Wagner, B. Identifying and overcoming the interface originating c-axis instability in highly Sc enhanced AlN for piezoelectric micro-electromechanical systems. J. Appl. Phys. 2017, 122, 035301. [Google Scholar] [CrossRef]
Design | Simulated Frequencies (Slow and Fast) | Mean of Measured Frequencies (Slow and Fast) | Quality Factor |
---|---|---|---|
A | 2.7 kHz; 3.8 kHz | 2.3 kHz; 3.2 kHz | 15,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wysocki, L.; Schütt, P.; Albers, J.; Wille, G.; Yarar, E.; Raschdorf, P.; Wen, L.; Gu-Stoppel, S. Biaxial Piezoelectrically Driven MEMS Mirror with Large Design Flexibility. Proceedings 2024, 97, 139. https://doi.org/10.3390/proceedings2024097139
Wysocki L, Schütt P, Albers J, Wille G, Yarar E, Raschdorf P, Wen L, Gu-Stoppel S. Biaxial Piezoelectrically Driven MEMS Mirror with Large Design Flexibility. Proceedings. 2024; 97(1):139. https://doi.org/10.3390/proceedings2024097139
Chicago/Turabian StyleWysocki, Lena, Patrick Schütt, Jörg Albers, Gunnar Wille, Erdem Yarar, Paul Raschdorf, Lianzhi Wen, and Shanshan Gu-Stoppel. 2024. "Biaxial Piezoelectrically Driven MEMS Mirror with Large Design Flexibility" Proceedings 97, no. 1: 139. https://doi.org/10.3390/proceedings2024097139
APA StyleWysocki, L., Schütt, P., Albers, J., Wille, G., Yarar, E., Raschdorf, P., Wen, L., & Gu-Stoppel, S. (2024). Biaxial Piezoelectrically Driven MEMS Mirror with Large Design Flexibility. Proceedings, 97(1), 139. https://doi.org/10.3390/proceedings2024097139