The Association of Antarctic Sea Ice with the Subantarctic Mode and Antarctic Intermediate Waters during the Last Deglaciation †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frölicher, T.L.; Sarmiento, J.L.; Paynter, D.J.; Dunne, J.P.; Krasting, J.P.; Winton, M. Dominance of the Southern Ocean in Anthropogenic Carbon and Heat Uptake in CMIP5 Models. J. Clim. 2015, 28, 862–886. [Google Scholar] [CrossRef]
- Hartin, C.A.; Fine, R.A.; Sloyan, B.M.; Talley, L.D.; Chereskin, T.K.; Happell, J. Formation rates of Subantarctic mode water and Antarctic intermediate water within the South Pacific. In Deep Sea Research Part I: Oceanographic Research Papers; Elsevier: Amsterdam, The Netherlands, 2011; Volume 58, pp. 524–534. [Google Scholar]
- Sarmiento, J.L.; Gruber, N.; Brzezinski, M.A.; Dunne, J.P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 2004, 427, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Menviel, L.; Spence, P.; Yu, J.; Chamberlain, M.A.; Matear, R.J.; Meissner, K.J.; England, M.H. Southern Hemisphere westerlies as a driver of the early deglacial atmospheric CO2 rise. Nat. Commun. 2018, 9, 2503. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.F.; Ali, S.; Bradtmiller, L.I.; Nielsen, S.H.H.; Fleisher, M.Q.; Anderson, B.E.; Burckle, L.H. Wind-Driven Upwelling in the Southern Ocean and the Deglacial Rise in Atmospheric CO2. Science 2009, 323, 1443–1448. [Google Scholar] [CrossRef]
- Abernathey, R.P.; Cerovecki, I.; Holland, P.R.; Newsom, E.; Mazloff, M.; Talley, L.D. Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nat. Geosci. 2016, 9, 596–601. [Google Scholar] [CrossRef]
- Liu, W.; Liu, Z.; Li, S. The Driving Mechanisms on Southern Ocean Upwelling Change during the Last Deglaciation. Geosciences 2021, 11, 266. [Google Scholar] [CrossRef]
- Lauderdale, J.M.; Williams, R.G.; Munday, D.R.; Marshall, D.P. The impact of Southern Ocean residual upwelling on atmospheric CO2 on centennial and millennial timescales. Clim. Dyn. 2017, 48, 1611–1631. [Google Scholar] [CrossRef]
- Mandal, G.; Lee, S.-Y.; Yu, J.-Y. The Roles of Wind and Sea Ice in Driving the Deglacial Change in the Southern Ocean Upwelling: A Modeling Study. Sustainability 2021, 13, 353. [Google Scholar] [CrossRef]
- Mandal, G.; Yu, J.-Y.; Lee, S.-Y. The Roles of Orbital and Meltwater Climate Forcings on the Southern Ocean Dynamics during the Last Deglaciation. Sustainability 2022, 14, 2927. [Google Scholar] [CrossRef]
- Marzocchi, A.; Jansen, M.F. Connecting Antarctic sea ice to deep-ocean circulation in modern and glacial climate simulations. Geophys. Res. Lett. 2017, 44, 6286–6295. [Google Scholar] [CrossRef]
- Jansen, M.F.; Nadeau, L.-P. The Effect of Southern Ocean Surface Buoyancy Loss on the Deep-Ocean Circulation and Stratification. J. Phys. Oceanogr. 2016, 46, 3455–3470. [Google Scholar] [CrossRef]
- Ferrari, R.; Jansen, M.F.; Adkins, J.F.; Burke, A.; Stewart, A.L.; Thompson, A.F. Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl. Acad. Sci. USA 2014, 111, 8753–8758. [Google Scholar] [CrossRef]
- Stein, K.; Timmermann, A.; Kwon, E.Y.; Friedrich, T. Timing and magnitude of Southern Ocean sea ice/carbon cycle feedbacks. Proc. Natl. Acad. Sci. USA 2020, 117, 4498–4504. [Google Scholar] [CrossRef]
- Costa, K.M.; Jacobel, A.W.; McManus, J.F.; Anderson, R.F.; Winckler, G.; Thiagarajan, N. Productivity patterns in the equatorial Pacific over the last 30,000 years. Glob. Biogeochem. Cycles 2017, 31, 850–865. [Google Scholar] [CrossRef]
- Calvo, E.; Pelejero, C.; Pena, L.D.; Cacho, I.; Logan, G.A. Eastern equatorial pacific productivity and related-CO2 changes since the last glacial period. Proc. Natl. Acad. Sci. USA 2011, 108, 5537–5541. [Google Scholar] [CrossRef]
- Pena, L.D.; Goldstein, S.L.; Hemming, S.R.; Jones, K.M.; Calvo, E.; Pelejero, C.; Cacho, I. Rapid changes in meridional advection of Southern Ocean intermediate waters to the tropical Pacific during the last 30kyr. Earth Planet. Sci. Lett. 2013, 368, 20–32. [Google Scholar] [CrossRef]
- Li, L.; Liu, Z.; Zhu, C.; He, C.; Otto-Bliesner, B. Shallowing Glacial Antarctic Intermediate Water by Changes in Sea Ice and Hydrological Cycle. Geophys. Res. Lett. 2021, 48, e2021GL094317. [Google Scholar] [CrossRef]
- Haumann, F.A.; Gruber, N.; Munnich, M.; Frenger, I.; Kern, S. Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature 2016, 537, 89–92. [Google Scholar] [CrossRef]
- Bronselaer, B.; Winton, M.; Griffies, S.M.; Hurlin, W.J.; Rodgers, K.B.; Sergienko, O.V.; Stouffer, R.J.; Russell, J.L. Change in future climate due to Antarctic meltwater. Nature 2018, 564, 53–58. [Google Scholar] [CrossRef]
- Liu, Z.; Otto-Bliesner, B.L.; He, F.; Brady, E.C.; Tomas, R.; Clark, P.U.; Carlson, A.E.; Lynch-Stieglitz, J.; Curry, W.; Brook, E.; et al. Transient simulation of last deglaciation with a new mechanism for Bolling-Allerod warming. Science 2009, 325, 310–314. [Google Scholar] [CrossRef]
- Gent, P.R.; McWilliams, J.C. Isopycnal Mixing in Ocean Circulation Models. J. Phys. Oceanogr. 1990, 20, 150–155. [Google Scholar] [CrossRef]
- Sloyan, B.M.; Kamenkovich, I.V. Simulation of Subantarctic Mode and Antarctic Intermediate Waters in Climate Models. J. Clim. 2007, 20, 5061–5080. [Google Scholar] [CrossRef]
- Sloyan, B.M.; Rintoul, S.R. Circulation, Renewal, and Modification of Antarctic Mode and Intermediate Water. J. Phys. Oceanogr. 2001, 31, 1005–1030. [Google Scholar] [CrossRef]
- Berglund, S.; Döös, K.; Campino, A.A.; Nycander, J. The Water Mass Transformation in the Upper Limb of the Overturning Circulation in the Southern Hemisphere. J. Geophys. Res. Ocean. 2021, 126, e2021JC017330. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandal, G.; Lee, S.-Y.; Yu, J.-Y. The Association of Antarctic Sea Ice with the Subantarctic Mode and Antarctic Intermediate Waters during the Last Deglaciation. Proceedings 2023, 87, 38. https://doi.org/10.3390/IECG2022-14816
Mandal G, Lee S-Y, Yu J-Y. The Association of Antarctic Sea Ice with the Subantarctic Mode and Antarctic Intermediate Waters during the Last Deglaciation. Proceedings. 2023; 87(1):38. https://doi.org/10.3390/IECG2022-14816
Chicago/Turabian StyleMandal, Gagan, Shih-Yu Lee, and Jia-Yuh Yu. 2023. "The Association of Antarctic Sea Ice with the Subantarctic Mode and Antarctic Intermediate Waters during the Last Deglaciation" Proceedings 87, no. 1: 38. https://doi.org/10.3390/IECG2022-14816
APA StyleMandal, G., Lee, S. -Y., & Yu, J. -Y. (2023). The Association of Antarctic Sea Ice with the Subantarctic Mode and Antarctic Intermediate Waters during the Last Deglaciation. Proceedings, 87(1), 38. https://doi.org/10.3390/IECG2022-14816