Epistemological Considerations about Big Data and Prediction in Ecology †
Abstract
:1. Introduction
2. Ecological Big Data Promises and Discourses
3. Big Data for Better Prediction, but without the Need for Better Understanding?
4. Are We Replaying the Classical 1950′s Debate Surrounding the Demarcation Criterion and the Place of Theory in the Knowledge Production Process?
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Devictor, V.; Bensaude-Vincent, B. From ecological records to big data: The invention of global biodiversity. Hist. Philos. Life Sci. 2016, 38, 13. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, E. Explorer, Visualiser, Décider: Un Paradigme Méthodologique Pour la Production de Connaissances à Partir des Big Data. Ph.D. Thesis, Université de technologie de Compiègne, Compiègne, France, 2018. [Google Scholar]
- Kitchin, R. Big Data, new epistemologies and paradigm shifts. Big Data Soc. 2014, 1. [Google Scholar] [CrossRef] [Green Version]
- Anderson, C. The end of theory: The data deluge makes the scientific method obsolete. Wired Magazine, 23 June 2008. [Google Scholar]
- Hey, T. The Fourth Paradigm: Data-Intensive Scientific Discovery; Hey, T., Hey, A.J.G., Stewart, T., Tolle, K.M., Eds.; Microsoft Research: Redmond, DC, USA, 2009. [Google Scholar]
- Pierre-Benoît, J. On the economics of techno-scientific promises. In Débordements. Mélanges offerts à Michel Callon; Akrich, M., Barthe, Y., Muniesa, F., Mustar, P., Eds.; Presses des Mines: Paris, France, 2013; 407p. [Google Scholar]
- Devictor, V. La Prise en Charge Technoscientifique de la Crise de la Biodiversité. Ph.D. Thesis, Université Paris 1 Panthéon-Sorbonne, Paris, France, 2018. [Google Scholar]
- Maris, V.; Huneman, P.; Coreau, A.; Kéfi, S.; Pradel, R.; Devictor, V. Prediction in ecology: Promises, obstacles and clarifications. Oikos 2018, 127, 171–183. [Google Scholar] [CrossRef]
- Beck, J.; Böller, M.; Erhardt, A.; Schwanghart, W. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecol. Inform. 2014, 19, 10–15. [Google Scholar] [CrossRef]
- Moudrý, V.; Devillers, R. Quality and usability challenges of global marine biodiversity databases: An example for marine mammal data. Ecol. Inform. 2020, 56, 101051. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B.R. Catastrophic shifts in ecosystems. Nature 2001, 413, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Kéfi, S.; Dakos, V.; Scheffer, M.; Van Nes, E.H.; Rietkerk, M. Early warning signals also precede non-catastrophic transitions. Oikos 2012, 122, 641–648. [Google Scholar] [CrossRef] [Green Version]
- Perretti, C.T.; Munch, S.B.; Sugihara, G. Model-Free Forecasting Outperforms the Correct Mechanistic Model for Simulated and Experimental Data. Proc. Natl. Acad. Sci. USA 2013, 110, 5253–5257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabot, F. Why Preferring Parametric Forecasting to Nonparametric Methods? J. Theor. Biol. 2015, 372, 205–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houlahan, J.E.; McKinney, S.T.; Anderson, T.M.; McGill, B.J. The priority of prediction in ecological understanding. Oikos 2016, 126, 1–7. [Google Scholar] [CrossRef]
- Mouquet, N.; Lagadeuc, Y.; Devictor, V.; Doyen, L.; Duputié, A.; Eveillard, D.; Loreau, M. Predictive ecology in a changing world. J. Appl. Ecol. 2015, 52, 19. [Google Scholar] [CrossRef]
- Leonelli, S. Data-Centric Biology: A Philosophical Study; The University of Chicago Press: Chicago, IL, USA; London, UK, 2016. [Google Scholar]
- Clark, J.S.; Gelfand, A.E. A future for models and data in environmental science. Trends Ecol. Evol. 2006, 21, 375–380. [Google Scholar] [CrossRef]
- Marquet, P.A.; Allen, A.P.; Brown, J.H.; Dunne, J.A.; Enquist, B.J.; Gillooly, J.F.; Gowaty, P.A.; Green, J.L.; Harte, J.; Hubbell, S.P.; et al. On Theory in Ecology. BioScience 2014, 64, 701–710. [Google Scholar] [CrossRef] [Green Version]
- Popper, K. The Logic of Scientific Discovery; Repr. 2008 (twice); Routledge Classics; Routledge: London, UK, 2008. [Google Scholar]
- Laudan, L. The Demise of the Demarcation Problem. In Physics, Philosophy and Psychoanalysis; Cohen, R.S., Laudan, L., Eds.; Springer: Dordrecht, The Netherlands, 1983; Volume 76, pp. 111–127. [Google Scholar]
- Hacking, I. Concevoir et Expérimenter: Thèmes Introductifs à la Philosophie des Sciences Expérimentales; Bourgois, C., Ed.; Épistémè Essais: Paris, France, 1989. [Google Scholar]
- Knorr-Cetina, K. Epistemic Cultures: How the Sciences Make Knowledge; Harvard University Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Giere, R.N. Scientific Perspectivism; University of Chicago Press: Chicago, IL, USA, 2006. [Google Scholar]
- Callebaut, W. Scientific Perspectivism: A Philosopher of Science’s Response to the Challenge of Big Data Biology. Stud. Hist. Philos. Sci. Part C 2012, 43, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Dupré, J. The Metaphysics of Biology; Elements in the Philosophy of Biology; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Levins, R. The strategy of model building in population biology. Am. Sci. 1966, 54, 421–431. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trocmé--Nadal, L. Epistemological Considerations about Big Data and Prediction in Ecology. Proceedings 2022, 81, 86. https://doi.org/10.3390/proceedings2022081086
Trocmé--Nadal L. Epistemological Considerations about Big Data and Prediction in Ecology. Proceedings. 2022; 81(1):86. https://doi.org/10.3390/proceedings2022081086
Chicago/Turabian StyleTrocmé--Nadal, Léo. 2022. "Epistemological Considerations about Big Data and Prediction in Ecology" Proceedings 81, no. 1: 86. https://doi.org/10.3390/proceedings2022081086
APA StyleTrocmé--Nadal, L. (2022). Epistemological Considerations about Big Data and Prediction in Ecology. Proceedings, 81(1), 86. https://doi.org/10.3390/proceedings2022081086