The Glyphosate Target Enzyme 5-Enolpyruvyl Shikimate 3-Phosphate Synthase (EPSPS) Contains Several EPSPS-Associated Domains in Fungi †
Abstract
:1. Introduction
2. Material and Methods
3. Results
3.1. Functional and Domain Characterization
3.2. A Bipartite Network of Species and EPSPS-Associated Domains
3.3. Maximum Parsimony Analysis of EPSPS-Associated Domains
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bentley, R.; Haslam, E. The shikimate pathway A metabolic tree with many branche. Crit. Rev. Biochem. Mol. Biol. 1990, 25, 307–384. [Google Scholar] [CrossRef] [PubMed]
- Richards, T.A.; Dacks, J.B.; Campbell, S.A.; Blanchard, J.L.; Foster, P.G.; McLeod, R.; Roberts, C.W. Evolutionary origins of the eukaryotic shikimate pathway: Gene fusions, horizontal gene transfer, and endosymbiotic replacements. Eukaryot. Cell. 2006, 5, 1517–1531. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H.; Dudareva, N. The Shikimate Pathway and Aromatic Amino Acid Biosynthesis in Plants. Annu. Rev. Plant Biol. 2012, 63, 73–105. [Google Scholar] [CrossRef] [PubMed]
- Steinrücken, H.C.; Amrhein, N. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvylshikimic acid-3-phosphate synthase. Biochem. Biophys. Res. Commun. 1980, 94, 1207–1212. [Google Scholar] [CrossRef]
- Lumsden, J.; Coggins, J.R. The Subunit Structure of the arom Multienzyme Complex of Neurospora crassa. Biochem. J. 1978, 161. Available online: https://sciwheel.com/work/item/8971159/resources/8495092/pdf. Published (accessed on 9 October 2020).
- Basu, M.K.; Carmel, L.; Rogozin, I.B.; Koonin, E.V. Evolution of protein domain promiscuity in eukaryotes. Genome Res. 2008, 18, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Leino, L.; Tall, T.; Helander, M.; Saloniemi, I.; Saikkonen, K.; Ruuskanen, S.; Puigbò, P. Classification of the glyphosate target enzyme (5-enolpyruvylshikimate-3-phosphate synthase) Equal contribution of the authors. bioRxiv 2020. [Google Scholar] [CrossRef]
- Rainio, M.J.; Ruuskanen, S.; Helander, M.; Saikkonen, K.; Saloniemi, I.; Puigbò, P. Adaptation of bacteria to glyphosate: A microevolutionary perspective of the enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase. bioRxiv 2020. [Google Scholar] [CrossRef]
- Balbuena, M.S.; Tison, L.; Hahn, M.L.; Greggers, U.; Menzel, R.; Farina, W.M. Effects of sublethal doses of glyphosate on honeybee navigation. J. Exp. Biol. 2015, 218, 2799–2805. [Google Scholar] [CrossRef] [PubMed]
- Vandenberg, L.N.; Blumberg, B.; Antoniou, M.N.; Benbrook, C.M.; Carroll, L.; Colborn, T.; Everett, L.G.; Hansen, M.; Landrigan, P.J.; Lanphear, B.P.; et al. Is it time to reassess current safety standards for glyphosate-based herbicides? J. Epidemiol. Community Health 2017, 71, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Burchfield, S.L.; Bailey, D.C.; Todt, C.E.; Denney, R.D.; Negga, R.; Fitsanakis, V.A. Acute exposure to a glyphosate-containing herbicide formulation inhibits Complex II and increases hydrogen peroxide in the model organism Caenorhabditis elegans. Environ. Toxicol. Pharmacol. 2019, 66, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Nerozzi, C.; Recuero, S.; Galeati, G.; Bucci, D.; Spinaci, M.; Yeste, M. Effects of Roundup and its main component, glyphosate, upon mammalian sperm function and survival. Sci. Rep. 2020, 10, 11026. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.P.; Le Manac’h, S.G.; Hénault-Ethier, L.; Labrecque, M.; Lucotte, M.; Juneau, P. Glyphosate-dependent inhibition of photosynthesis in willow. Front. Plant Sci. 2017, 8, 207. [Google Scholar] [CrossRef] [PubMed]
- Sonnhammer, E.L.L.; Eddy, S.R.; Durbin, R. Pfam: A comprehensive database of protein domain families based on seed alignments. Proteins Struct. Funct. Genet. 1997, 28, 405–420. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2 Approximately maximum-likelihood trees for large alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004, 5, 113. [Google Scholar] [CrossRef] [PubMed]
- Castresana, J. Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software Environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Csurös, M. Ancestral reconstruction by asymmetric Wagner parsimony over continuous characters and squared parsimony over distributions. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 5267 LNBI.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 72–86. [Google Scholar] [CrossRef]
- Jaworski, E.G. Mode of action of N-phosphonomethylglycine. Inhibition of aromatic amino acid biosynthsis. J. Agric. Food Chem. 1972, 20, 1195–1198. [Google Scholar] [CrossRef]
Gene | Frequency | Species | Function |
---|---|---|---|
EPSPS | 1448 | 8833 | Sixth step of shikimate pathway (SP), EPSP synthase |
SKI | 424 | 7716 | First step of the SP pathway, phosphorylates shikimate |
DHQ_synthase | 420 | 7429 | Second step of the SP pathway, removes a phosphate from DHAP |
DHquinase_I | 416 | 2073 | Third step of the SP pathway, 3-dehydroquinate dehydratase |
Shikimate_dh_N | 402 | 7658 | The substrate-binding domain of the shikimate dehydrogenase |
HTH_3 | 218 | 9670 | Helix-turn-helix, a major structural motif capable of binding DNA |
Shikimate_DH | 160 | 6719 | Fourth step of the SP pathway, quinate 5-dehydrogenase |
PDH | 127 | 7136 | Prephenate dehydrogenases are part of tyrosine biosynthesis. |
Cytidylate_kin | 88 | 6874 | Kinase of cytidine 5′-monophosphate |
PF13193 | 17 | 8031 | AMP-binding enzyme C-terminal domain for PF00501 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tall, T.; Puigbò, P. The Glyphosate Target Enzyme 5-Enolpyruvyl Shikimate 3-Phosphate Synthase (EPSPS) Contains Several EPSPS-Associated Domains in Fungi. Proceedings 2021, 76, 6. https://doi.org/10.3390/IECGE-07146
Tall T, Puigbò P. The Glyphosate Target Enzyme 5-Enolpyruvyl Shikimate 3-Phosphate Synthase (EPSPS) Contains Several EPSPS-Associated Domains in Fungi. Proceedings. 2021; 76(1):6. https://doi.org/10.3390/IECGE-07146
Chicago/Turabian StyleTall, Tuomas, and Pere Puigbò. 2021. "The Glyphosate Target Enzyme 5-Enolpyruvyl Shikimate 3-Phosphate Synthase (EPSPS) Contains Several EPSPS-Associated Domains in Fungi" Proceedings 76, no. 1: 6. https://doi.org/10.3390/IECGE-07146
APA StyleTall, T., & Puigbò, P. (2021). The Glyphosate Target Enzyme 5-Enolpyruvyl Shikimate 3-Phosphate Synthase (EPSPS) Contains Several EPSPS-Associated Domains in Fungi. Proceedings, 76(1), 6. https://doi.org/10.3390/IECGE-07146