Instrumental and Sensory Properties of Cowpea and Whey Protein Concentrate-Fortified Extruded Rice Snacks †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Extrusion Processing
2.2. Colour Analysis
2.3. Texture Analysis
2.4. Sensory Analysis
2.5. Statistical Analysis
3. Results and Discussion
Instrumental Texture and Colour Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beck, S.M.; Knoerzer, K.; Foerster, M.; Mayo, S.; Philipp, C.; Arcot, J. Low moisture extrusion of pea protein and pea fibre fortified rice starch blends. J. Food Eng. 2018, 231, 61–71. [Google Scholar] [CrossRef]
- Sha, M.; Pathania, S.; Sharma, A. LWT—Food Science and Technology Optimization of the extrusion process for development of high fi bre soybean-rice ready-to-eat snacks using carrot pomace and cauli fl ower trimmings. LWT 2016, 74. [Google Scholar] [CrossRef]
- Stojceska, V.; Ainsworth, P.; Plunkett, A.; Ibanoǧlu, Ş. The advantage of using extrusion processing for increasing dietary fibre level in gluten-free products. Food Chem. 2010, 121, 156–164. [Google Scholar] [CrossRef]
- Arribas, C.; Pereira, E.; Barros, L.; Alves, M.J.; Calhelha, R.C.; Guillamón, E.; Pedrosa, M.M.; Ferreira, I.C.F.R. Healthy novel gluten-free formulations based on beans, carob fruit and rice: Extrusion effect on organic acids, tocopherols, phenolic compounds and bioactivity. Food Chem. 2019, 292, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Brennan, C.; Brennan, M.; Derbyshire, E.; Tiwari, B.K. Effects of extrusion on the polyphenols, vitamins and antioxidant activity of foods. Trends Food Sci. Technol. 2011, 22, 570–575. [Google Scholar] [CrossRef]
- Martín-Cabrejas, M. Legumes: Nutritional Quality, Processing and Potential Health Benefits; Martín-Cabrejas, M., Ed.; Royal Society of Chemistry: Cambridge, UK, 2019. [Google Scholar]
- Holmes, S. Nutrition and the prevention of cancer. J. Fam. Health Care 2006, 16, 43–46. [Google Scholar] [PubMed]
- Hachibamba, T.; Dykes, L.; Awika, J.; Minnaar, A.; Duodu, K.G. Effect of simulated gastrointestinal digestion on phenolic composition and antioxidant capacity of cooked cowpea (Vigna unguiculata) varieties. Int. J. Food Sci. Technol. 2013, 48, 2638–2649. [Google Scholar] [CrossRef]
- Ojwang, L.O.; Banerjee, N.; Noratto, G.D.; Angel-Morales, G.; Hachibamba, T.; Awika, J.M.; Mertens-Talcott, S.U. Polyphenolic extracts from cowpea (Vigna unguiculata) protect colonic myofibroblasts (CCD18Co cells) from lipopolysaccharide (LPS)-induced inflammation-modulation of microRNA 126. Food Funct. 2015, 6, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Wani, S.A.; Kumar, P. Influence of different mixtures of ingredients on the physicochemical, nutritional and pasting properties of extruded snacks. J. Food Meas. Charact. 2016, 10, 690–700. [Google Scholar] [CrossRef]
- Cueto, M.; Farroni, A.; Rodríguez, S.D.; Schoenlechner, R.; Schleining, G.; del Pilar Buera, M. Assessing changes in enriched maize flour formulations after extrusion by means of FTIR, XRD, and chemometric analysis. Food Bioprocess Technol. 2018, 11, 1586–1595. [Google Scholar] [CrossRef]
- Damodaran, S. Amino acids, peptides, and proteins. In Food Chemistry, 3rd ed.; CRC press Taylor & Francis: Boca Raton, FL, USA, 1996; pp. 412–413. [Google Scholar]
- Kristiawan, M.; Chaunier, L.; Della Valle, G.; Ndiaye, A.; Vergnes, B. Trends in Food Science & Technology Modeling of starchy melts expansion by extrusion. Trends Food Sci. Technol. 2016, 48, 13–26. [Google Scholar]
- Robin, F.; Dubois, C.; Curti, D.; Schuchmann, H.P.; Palzer, S. Effect of wheat bran on the mechanical properties of extruded starchy foams. Food Res. Int. 2011, 44, 2880–2888. [Google Scholar] [CrossRef]
- Paula, A.M.; Conti-Silva, A.C. Texture profile and correlation between sensory and instrumental analyses on extruded snacks. J. Food Eng. 2014, 121, 9–14. [Google Scholar] [CrossRef]
Sample | Colour Properties | Texture | |||||
---|---|---|---|---|---|---|---|
L* | a* | b* | ΔE | BI | Crispiness | Hardness | |
Control | 75.92 ± 0.93 a | −0.45 ± 0.02 e | 12.24 ± 0.21 d | - | - | 45.40 ± 6.23 a | 223.35 ± 10.67 c |
10% CPF | 68.30 ± 0.98 b | 0.32 ± 0.05 d | 12.77 ± 0.46 d | 7.69 | 20.56 | 39.80 ± 4.32 a | 243.32 ± 12.88 c |
15% CPF + 5% WPC | 68.07 ± 0.65 b | 2.26 ± 0.08 c | 18.90 ± 0.79 c | 10.65 | 34.29 | 37.80 ± 2.17 a | 308.9 ± 32.3 b |
20% CPF + 10% WPC | 67.14 ± 0.72 b,c | 3.06 ± 0.13 a | 21.62 ± 0.06 a | 13.32 | 41.38 | 40.40 ± 1.14 a | 326.2 ± 22.6 b |
25% CPF + 15% WPC | 65.93 ± 0.97 c | 2.34 ± 0.09 c | 20.07 ± 0.14 b | 13.00 | 38.13 | 38.80 ± 1.30 a | 339.11 ± 20.18 b |
30% CPF + 20% WPC | 65.75 ± 0.33 c | 2.69 ± 0.12 b | 21.83 ± 0.47 a | 14.33 | 42.47 | 23.80 ± 6.83 b | 446.11 ± 15.46 a |
Sample | Appearance | Colour | Aroma | Overall Flavour | Texture | After Taste | Overall Liking |
---|---|---|---|---|---|---|---|
Control | 5.70 ± 1.77 a | 5.65 ± 1.77 a | 5.44 ± 1.30 a | 5.17 ± 1.50 a | 5.29 ± 1.71 b | 5.04 ± 1.77 b | 5.11 ± 1.65 b |
10% CPF | 5.69 ± 1.55 a | 5.79 ± 1.74 a | 5.63 ± 1.38 a | 5.80 ± 1.55 a | 6.16 ± 1.49 a | 5.67 ± 1.56 ab | 5.77 ± 1.44 ab |
15% CPF + 5% WPC | 5.97 ± 1.52 a | 6.19 ± 1.31 a | 5.73 ± 1.34 a | 5.89 ± 1.85 a | 6.36 ± 1.51 a | 5.99 ± 1.80 a | 6.07 ± 1.53 a |
20% CPF + 10% WPC | 5.61 ± 1.48 a | 5.73 ± 1.58 a | 5.56 ± 1.40 a | 5.24 ± 1.61 a | 6.04 ± 1.50 a | 5.41 ± 1.58 a,b | 5.46 ± 1.58 ab |
25% CPF + 15% WPC | 5.53 ± 1.50 a | 5.73 ± 1.56 a | 5.46 ± 1.44 a | 5.21 ± 1.70 a | 6.04 ± 1.65 a | 5.01 ± 1.71 b | 5.31 ± 1.7 ab |
30% CPF + 20% WPC | 5.64 ± 1.60 a | 5.69 ± 1.48 a | 5.35 ± 1.36 a | 5.2 ± 1.63 a | 5.99 ± 1.55 ab | 5.06 ± 1.74 b | 5.20 ± 1.64 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
H.N., N.D.; Torrico, D.D.; Brennan, M.A.; Brennan, C.S. Instrumental and Sensory Properties of Cowpea and Whey Protein Concentrate-Fortified Extruded Rice Snacks. Proceedings 2021, 70, 95. https://doi.org/10.3390/foods_2020-07704
H.N. ND, Torrico DD, Brennan MA, Brennan CS. Instrumental and Sensory Properties of Cowpea and Whey Protein Concentrate-Fortified Extruded Rice Snacks. Proceedings. 2021; 70(1):95. https://doi.org/10.3390/foods_2020-07704
Chicago/Turabian StyleH.N., Nadeesha Dilrukshi, Damir D. Torrico, Margaret A. Brennan, and Charles S. Brennan. 2021. "Instrumental and Sensory Properties of Cowpea and Whey Protein Concentrate-Fortified Extruded Rice Snacks" Proceedings 70, no. 1: 95. https://doi.org/10.3390/foods_2020-07704
APA StyleH.N., N. D., Torrico, D. D., Brennan, M. A., & Brennan, C. S. (2021). Instrumental and Sensory Properties of Cowpea and Whey Protein Concentrate-Fortified Extruded Rice Snacks. Proceedings, 70(1), 95. https://doi.org/10.3390/foods_2020-07704