LCA Streetlight Study for Circular Economic to Local Scale †
1. Introduction
2. Experimental
2.1. Equipment
2.2. Annual Energy Consumption
3. Results and Discussion
- (a)
- The national production of some elements and/or systems is scarce, reducing in some cases to the mere assembly of elements. It is necessary to incorporate eco-design to reduce the amount of material used and to achieve a greater location of the components that avoid the important impacts of transport.
- (b)
- The components of the luminaires have different manufacturing areas, which causes a considerable increase in the impacts of transport to the final assembly site.
- (c)
- The end of life of components such as the carcass does not present alternatives to landfill or incineration, due to the material with which it is manufactured (plastic).
- (d)
- It is necessary for the environmental analysis of the alternative of recycling and incorporation to other materials, as an alternative to the reuse of the plastic components (housing).
- (e)
- When not finding LCA studies on similar luminaires, it is necessary to carry out other comparative LCA studies that provide us with environmental information on these products and that can be used for decision-making along with other aspects such as economic, technical, and maintenance, etc. [18,19,20,21].
4. Conclusions
References
- Hartley, D.; Jurgens, C.; Zatcoff, E.; Bilec, M.; Marriott, J. Life Cycle Assessment of Streetlight Technologies; University of Pittsburgh, Mascaro Center for Sustainable Innovation: Pittsburgh, PA, USA, 2009. [Google Scholar]
- Butera, S.; Christensen, T.H.; Astrup, T.F. Life Cycle Assessment of construction and demolition waste management. Waste Manag. 2015, 44, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.; Guo, J.; Zhang, W.; Summers, P.A.; Hall, P. From waste plastics to industrial raw materials: A life cycle assessment of mechanical plastic recycling practice based on a real-world case study. Sci. Total. Environ. 2017, 601, 1192–1207. [Google Scholar] [CrossRef] [PubMed]
- European Commission (EC). On Resource Efficiency Opportunities in the Building Sector, COM, Brussels. 2014. Available online: htpp://ec.europea.eu/environement/eussd/pdf/SustainableBuildingsCommunication.pdf (accessed on 20 April 2021).
- Rio, M.; Reyes, T.; Roucoules, L. Toward proactive (eco) design process: Modeling information transformations among designers activities. J. Clean. Prod. 2013, 39, 105–116. [Google Scholar] [CrossRef]
- Fernández-Alcalá, J. Fundamentos Para la Edificación Sostenible. Elhuyar Fundazioa: Usurbil, Spain, 2010. [Google Scholar]
- Technical Documentation of Manufacturer. Catálogo Técnico Sobre Iluminación Led. Luminarias Viales para Exteriores. Solitec. Viasol. 18-06. c/Marea Baja, nº 19. Polígono Industrial Alameda. Málaga. España. Available online: www.solitecled.com (accessed on 20 April 2021).
- PRé Consultants; Version 8.3; SimaPro LCA Software: Amersfoort, The Netherlands, 2010.
- Jolliet, O.; Margni, M.; Charles, R. IMPACT 2002+: A new life cycle impact assessment methodology. Int. J. Life Cycle Assess. 2003, 8, 324. [Google Scholar] [CrossRef]
- Humbert, S.; Schryver, A.D.; Margni, M.; Jolliet, O. IMPACT 2002+: User Guide. Available online: http://www.quantis-intl.com/pdf/IMPACT2002_UserGuide_for_vQ2.2.pdf (accessed on 20 April 2021).
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.D.M.; Hollander, A.; Zijp, M.; Van Zelm, R. ReCiPe 2016: A Harmised Life Cycle Impact Assessment Method at Midpoint and Endpoint Level; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- De Almeida, A.; Santos, B.; Paolo, B.; Quicheron, M. Solid state lighting review–potential and challenges in Europe. Renewable and Sustainable. Energy Rev. 2014, 34, 30–48. [Google Scholar]
- Lobao, J.A.; Devezas, T.; Catalao, J.P.S. Energy efficiency of lighting installations: Software application and experimental validation. Energy Rep. 2015, 1, 110–115. [Google Scholar] [CrossRef]
- Jägerbrand, A.K. New framework of sustainable indicators for outdoor LED (Light Emitting Diodes) lighting and SSL (Solid State Lighting). Sustainability 2015, 7, 1028–1063. [Google Scholar] [CrossRef]
- Unión Europea. Libro Verde. Iluminando las Ciudades Acelerando el Despliegue de Soluciones de Iluminación Innovadoras en las Ciudades Europeas. Comisión Europea. Dirección General de Redes de Comunicación, ContenidoyTecnología. 2013. Available online: http://www.idae.es/uploads/documentos/documentos_Iluminando_las_Ciudades_Libro_Verde_(European_Commission)_faccb514.pdf (accessed on 20 April 2021).
- Rode, I.; Moriarty, M.; Beattie, C.; McIntosh, J.; Hargroves, K. Technologies and Processes to Reduce Carbon Intensity of Main Road Projects; A research report and annotated bibliography for the Sustainable Built Environment National Research Centre (SBEnrc) by the Curtin University Sustainability Policy Institute; 2014; p. 2. [Google Scholar]
- Dong, L.; Wang, Y.; Li, H.X.; Jiang, B.Y.; Al-Hussein, M. Carbon Reduction Measures-Based LCA of Prefabricated Temporary Housing with Renewable Energy Systems. Sustainability 2018, 10, 718. [Google Scholar] [CrossRef]
- Navajas, A.; Uriarte, L. Gandia, L.M. Application of Eco-Design and Life Cycle Assessment Standards for Environmental Impact Reduction of an Industrial Product. Sustainability 2017, 9, 1724. [Google Scholar] [CrossRef]
- REEIAE España. Real Decreto 1890/2008. In Real Decreto 1890/2008, de 14 de noviembre, por el que se aprueba el Reglamento de eficiencia energética en instalaciones de alumbrado exterior y sus Instrucciones técnicas complementarias EA-01 a EA07; Boletín Oficial del Estado, 19 de noviembre de 2018; pp. 45988a–46057. Available online: https://www.boe.es/diario_boe/txt.php?id=BOE-A-2008-18634 (accessed on 20 April 2021).
- British Standards Institution (BSI). ISO 14040:2006 Environmental Management—Life Cycle Assessment—Principles and Framework; BSI: London, UK, 2006. [Google Scholar]
- Fraile-Garcia, E.; Ferreiro-Cabello, J.; López-Ochoa, L.M.; Lopez-Gonzalez, L.M. Study of the Technical Feasibility of Increasing the Amount of Recycled Concrete Waste Used in Ready-Mix Concrete Production. Materials 2018, 10, 817. [Google Scholar] [CrossRef] [PubMed]
- Laso, J.; García-Herrero, I.; Margallo, M.; Vazquez-Rowe, I.; Fullana, P.; Bala, A.; Gazulla, C.; Irabien, A.; Aldaco, R. Finding an economic and environmental balance in value chains based on circular economy thinking: An eco-efficiency methodology applied to the fish canning industry. Resour. Conserv. Recycl. 2018, 133, 428–437. [Google Scholar] [CrossRef]
- Minguez, R.; Zamora, S.; Barrenetxea, L.; Solaberrieta, E.; Etxaniz, O.; Muniozguren, J.; Izcara, J.; Larrieta, J.; López, J. Análisis de ciclo de vida para celdas de distribución eléctrica primaria. DYNA-Ing. Ind. 2013, 88. [Google Scholar] [CrossRef] [PubMed]
- Steen, B. A Systematic Approach to Environmental Strategies in Product Development (EPS), Version 2000. In General System Characteristic; 1999. [Google Scholar]
- Frischknecht, R.; Jungbluth, N.; Althaus, H.J.; Doka, G.; Dones, R.; Heck, T.; Hellweg, S.; Hischier, R.; Nemecek, T.; Rebitzer, G. and Spielmann, M. The Ecoinvent database: Overview and methological framework. Int. J. Life Cycle Assess. 2005, 10, 3–9. [Google Scholar] [CrossRef]
Standard | Description | Edition |
---|---|---|
ISO 14040:2006 | Environmental management, Life Cycle Assessment, Principles and framework. | 2006 |
ISO 14044:2006 | Environmental management, Life Cycle Assessment, Requirements and Guidelines. | 2006 |
ISO/TR 14047:2012 | Environmental management, Life Cycle Assessment, Illustrative examples on how to apply ISO 14044 to impact assessment situations. | 2006 |
Functional Characterics | |
---|---|
Light Type | Outdoor |
High | 110 mm |
Long | 495 mm |
Width | 227 mm |
Haetsink material | High density aluminum |
Heatsink coating | Paint corrosive environments |
Optic screen | Template glass |
Measures screen | 110 x 165 mm |
Integrable control | Microcontrolador TI |
Security System | Temperature control |
Cnnection type | Maweel (MBTS) PFC>0,96 |
Nominal Power (AC) | 50 w |
Operative Life (Tamb 25o) | >100.000 hours (L80B 10) |
Damaged Categories | Units (kPt) Housing | Unit (kPt) Supply Power | % d of the Greater Environmental Impacts |
---|---|---|---|
Human health | 0.195 | 0.215 | Emissions to air李CO2 (60.15%), PAH Polycyclic aromatic hydrocarbons (66.5%) |
Exhaustion of Resources | 2.05 | 2.28 | Mining李Petroleum (62.55%), 李Coal (22.98%), 李Natural gas (14.47%) |
Damaged Categories | Units (kPt) Housing | Unit (kPt) Supply Power | % d of the Greater Environmental Impacts |
---|---|---|---|
Human health | 0,195 | 0,215 | Emissions to air李CO2 (60.15%), PAH Polycyclic aromatic hydrocarbons (66.5%) |
Exhaustion of Resources | 2,05 | 2,28 | Mining李Petroleum (62.55%), 李Coal (22.98%), 李Natural gas (14.47%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adolfo, L.-M.J.; Jesús, H.-O.M.; Paulo, B. LCA Streetlight Study for Circular Economic to Local Scale. Proceedings 2020, 52, 6. https://doi.org/10.3390/proceedings2020052006
Adolfo L-MJ, Jesús H-OM, Paulo B. LCA Streetlight Study for Circular Economic to Local Scale. Proceedings. 2020; 52(1):6. https://doi.org/10.3390/proceedings2020052006
Chicago/Turabian StyleAdolfo, Lozano-Miralles José, Hermoso-Orzáez Manuel Jesús, and Brito Paulo. 2020. "LCA Streetlight Study for Circular Economic to Local Scale" Proceedings 52, no. 1: 6. https://doi.org/10.3390/proceedings2020052006
APA StyleAdolfo, L. -M. J., Jesús, H. -O. M., & Paulo, B. (2020). LCA Streetlight Study for Circular Economic to Local Scale. Proceedings, 52(1), 6. https://doi.org/10.3390/proceedings2020052006