A Greener and Faster Approach for Determination of Phenolic Compounds by Smartphone-Based Colorimetry †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Extraction Preparation
2.2. Determination of Total Phenolic Content
2.2.1. Smartphone-Based Photometric Detection
3. Results and Discussion
3.1. TPC Content
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Castelucci, A.C.L. Avaliação Da Estabilidade Dos Compostos Bioativos de Polpas de Frutas Nativas Submetidas ao Processo de Irradiação. Ph.D. Thesis, Universidade de São Paulo, Sao Paulo, Brazil, 2015. [Google Scholar] [CrossRef]
- Granato, D.; Barba, F.J.; Bursać Kovačević, D.; Lorenzo, J.M.; Cruz, A.G.; Putnik, P. Functional Foods: Product Development, Technological Trends, Efficacy Testing, and Safety. Annu. Rev. Food Sci. Technol. 2020, 11, 93–118. [Google Scholar] [CrossRef] [PubMed]
- Dias, R.; Oliveira, H.; Fernandes, I.; Simal-Gandara, J.; Perez-Gregorio, R. Recent Advances in Extracting Phenolic Compounds from Food and Their Use in Disease Prevention and as Cosmetics. Crit. Rev. Food Sci. Nutr. 2020, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Santos, J.S.; Maciel, L.G.; Nunes, D.S. Chemical Perspective and Criticism on Selected Analytical Methods Used to Estimate the Total Content of Phenolic Compounds in Food Matrices. TrAC Trends Anal. Chem. 2016, 80, 266–279. [Google Scholar] [CrossRef]
- Caetano, A.C.D.S.; Araújo, C.R.D.; Lima, V.L.A.G.D.; Maciel, M.I.S.; Melo, E.D.A. Evaluation of Antioxidant Activity of Agro-Industrial Waste of Acerola (Malpighia emarginata D.C.) Fruit Extracts. Ciênc. E Tecnol. Aliment. 2011, 31, 769–775. [Google Scholar] [CrossRef]
- Da Cruz, R.G.; Beney, L.; Gervais, P.; De Lira, S.P.; de Souza Vieira, T.M.F.; Dupont, S. Comparison of the Antioxidant Property of Acerola Extracts with Synthetic Antioxidants Using an in Vivo Method with Yeasts. Food Chem. 2019, 277, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Mezadri, T.; Villaño, D.; Fernández-Pachón, M.S.; García-Parrilla, M.C.; Troncoso, A.M. Antioxidant Compounds and Antioxidant Activity in Acerola (Malpighia emarginata DC.) Fruits and Derivatives. J. Food Compos. Anal. 2008, 21, 282–290. [Google Scholar] [CrossRef]
- de Camargo, A.C.; Biasoto, A.C.T.; Schwember, A.R.; Granato, D.; Rasera, G.B.; Franchin, M.; Rosalen, P.L.; Alencar, S.M.; Shahidi, F. Should We Ban Total Phenolics and Antioxidant Screening Methods? The Link between Antioxidant Potential and Activation of NF-ΚB Using Phenolic Compounds from Grape by-Products. Food Chem. 2019, 290, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Blainski, A.; Lopes, G.; de Mello, J. Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium brasiliense L. Molecules 2013, 18, 6852–6865. [Google Scholar] [CrossRef] [PubMed]
- Soni, A.; Jha, S.K. Smartphone Based Non-Invasive Salivary Glucose Biosensor. Anal. Chim. Acta 2017, 996, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.F.S.; Rocha, F.R.P. A Novel Approach to Detect Milk Adulteration Based on the Determination of Protein Content by Smartphone-Based Digital Image Colorimetry. Food Control 2020, 115, 107299. [Google Scholar] [CrossRef]
- Masawat, P.; Harfield, A.; Srihirun, N.; Namwong, A. Green Determination of Total Iron in Water by Digital Image Colorimetry. Anal. Lett. 2017, 50, 173–185. [Google Scholar] [CrossRef]
- Jung, Y.; Kim, J.; Awofeso, O.; Kim, H.; Regnier, F.; Bae, E. Smartphone-Based Colorimetric Analysis for Detection of Saliva Alcohol Concentration. Appl. Opt. 2015, 54, 9183. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Oxidants and Antioxidants Part A; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar] [CrossRef]
- Brown, L.; Mac Berthouex, P. Limit of Detection. Stat. Environ. Eng. Second Ed. 2002, 55. [Google Scholar] [CrossRef]
- Silva, P.B.; Mendes, L.G.; Rehder, A.P.B.; Duarte, C.R.; Barrozo, M.A.S. Optimization of Ultrasound-Assisted Extraction of Bioactive Compounds from Acerola Waste. J. Food Sci. Technol. 2020, 57, 4627–4636. [Google Scholar] [CrossRef] [PubMed]
- Cruz, R.G. Potencial de Metabólitos da Acerola (Malpighia emarginata) Como Antioxidantes em Diferentes Sistemas Oxidativos Mediados por Radicais Livres. Ph.D. Thesis, Doutorado em Ciência e Tecnologia de Alimentos, Universidade de São Paulo, Piracicaba, Sao Paulo, Brazil, 2018. [Google Scholar] [CrossRef]
Experiment | Variables | Analytical Response 1 | |||
---|---|---|---|---|---|
Temperature (°C) | Ethanol Concentration (% v/v) | Extraction Time (min) | Reference Method | Proposed Method | |
1 | 60 (1) | 50 (0) | 30 (0) | 107 ± 2 | 107 ± 2 |
2 | 53 (0.500) | 99 (0.866) | 30 (0) | 101.4 ± 0.8 | 102 ± 2 |
3 | 53 (0.500) | 66 (0.289) | 50 (0.817) | 106 ± 2 | 107 ± 3 |
4 | 30 (−1) | 50 (0) | 30 (0) | 131 ± 1 | 131.1 ± 0.8 |
5 | 38 (−0.500) | 0 (−0.866) | 30 (0) | 76.5 ± 0.9 | 77 ± 2 |
6 | 38 (−0.500) | 33 (−0.289) | 10 (−0.817) | 121.3 ± 0.9 | 124 ± 4 |
7 | 53 (0.500) | 0 (−0.866) | 30 (0) | 79 ± 2 | 78 ± 1 |
8 | 53 (0.500) | 33 (−0.289) | 10 (−0.817) | 129 ± 2 | 132 ± 1 |
9 | 38 (−0.500) | 99 (0.866) | 30 (0) | 124.4 ± 0.9 | 126.3 ± 0.8 |
10 | 45 (0) | 83 (0.577) | 10 (−0.817) | 114.6 ± 0.6 | 119.0 ± 0.8 |
11 | 38 (−0.500) | 66 (0.289) | 50 (0.817) | 145.0 ± 0.7 | 146 ± 4 |
12 | 45 (0) | 17 (−0.577) | 50 (0.817) | 120 ± 5 | 120 ± 5 |
13 (CP) | 45 (0) | 50 (0) | 30 (0) | 122 | 123 |
14 (CP) | 45 (0) | 50 (0) | 30 (0) | 113 | 113 |
15 (CP) | 45 (0) | 50 (0) | 30 (0) | 120 | 116 |
16 (CP) | 45 (0) | 50 (0) | 30 (0) | 126 | 124 |
17 (CP) | 45 (0) | 50 (0) | 30 (0) | 113 | 116 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, L.C.; de Souza Silva, A.F.; de Moraes, L.M.B.; Gonçalves, I.C.; de Godoy, B.B.R.; Rocha, F.R.P. A Greener and Faster Approach for Determination of Phenolic Compounds by Smartphone-Based Colorimetry. Proceedings 2021, 70, 20. https://doi.org/10.3390/foods_2020-07655
Martins LC, de Souza Silva AF, de Moraes LMB, Gonçalves IC, de Godoy BBR, Rocha FRP. A Greener and Faster Approach for Determination of Phenolic Compounds by Smartphone-Based Colorimetry. Proceedings. 2021; 70(1):20. https://doi.org/10.3390/foods_2020-07655
Chicago/Turabian StyleMartins, Luís Claudio, Anna Flavia de Souza Silva, Liz Mary Bueno de Moraes, Isabela Camargo Gonçalves, Bianca Bacellar Rodrigues de Godoy, and Fábio Rodrigo Piovezani Rocha. 2021. "A Greener and Faster Approach for Determination of Phenolic Compounds by Smartphone-Based Colorimetry" Proceedings 70, no. 1: 20. https://doi.org/10.3390/foods_2020-07655
APA StyleMartins, L. C., de Souza Silva, A. F., de Moraes, L. M. B., Gonçalves, I. C., de Godoy, B. B. R., & Rocha, F. R. P. (2021). A Greener and Faster Approach for Determination of Phenolic Compounds by Smartphone-Based Colorimetry. Proceedings, 70(1), 20. https://doi.org/10.3390/foods_2020-07655