Effects of Process Parameters on the Color Quality of Anthocyanin-Based Colorants from Conventional and Microwave-Assisted Aqueous Extraction of Sweet Potato (Ipomoea batatas L.) Leaf Varieties †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sweet Potato Leaves (SPL)
2.2. Extraction of Colorant from Sweet Potato Leaves
2.2.1. Conventional Extraction Method
2.2.2. Microwave-Assisted Extraction (MAE)
2.3. Experimental Design and Statistical Analyses
2.3.1. Identifying the Limits of Process Parameters
2.3.2. Modeling of Responses
2.4. Color Measurement
2.5. Verification of Models
3. Results
3.1. Effects of Process Parameters on the Color Quality of Anthocyanin-Based Colorants from Conventional (Boiling) Aqueous Extraction of Sweet Potato (Ipomoea batatas L.) Leaf Varieties
3.2. Effects of Process Parameters on the Color Quality of Anthocyanin-Based Colorants from Microwave-Assisted Aqueous Extraction of Sweet Potato (Ipomoea batatas L.) Leaf Varieties
3.3. Validation of Models
4. Discussion
4.1. Effects of Process Parameters on the Color Quality of Anthocyanin-Based Colorants from Conventional (Boiling) Aqueous Extraction of Sweet Potato (Ipomoea batatas L.) Leaf Varieties
4.2. Effects of Process Parameters on the Color Quality of Anthocyanin-Based Colorants from Microwave-Assisted Aqueous Extraction of Sweet Potato (Ipomoea batatas L.) Leaf Varieties
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stich, E. Food Color and Coloring Food: Quality, Differentiation, and Regulatory Requirements in the European Union and the United States. In Handbook on Natural Pigments in Food and Beverages Industrial Applications for Improving Food Color, 1st ed.; Carle, R., Schweiggert, R.M., Eds.; Woodhead Publishing: Duxford, UK, 2016; pp. 3–27. [Google Scholar]
- Garber, L.L.; Hyatt, E.M.; Nafees, L. The Effects of Analogous Food Color on Perceived Flavor: A Factorial Investigation. J. Food Prod. Mark. 2016, 22, 486–500. [Google Scholar] [CrossRef]
- Burrows, G.; Hornero-Mendoza, D. Carotenoids and colour in fruit and vegetables. In Phytochemistry of Fruits and Vegetables; Tomas Barberan, F.A., Robins, R.J., Eds.; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Zhang, J.S.; Sokhansaj, S.; Wu, R.; Fang, W.; Yang, P. A Transformation Technique from RGB Signals to the Munsell System for Colour Analysis of Tobacco Leaves. Comput. Electron. Agric. 1998, 19, 155–166. [Google Scholar] [CrossRef]
- Shi, Z.; Francis, J.F.; Daun, H. Quantitative Comparison of Stability of Anthocyanins from Brassica oleracea and Tradescantia pallida in Non-sugar Drink Model and Protein Model Systems. J. Food Sci. 1992, 57, 768–770. [Google Scholar] [CrossRef]
- Hine, T. The Total Package: The Evolution and Secret Meanings of Boxes, Bottles, Cans, and Tubes, 1st ed.; Little Brown & Co: New York, NY, USA, 1995. [Google Scholar]
- Marmion, D.M. Handbook of U.S. Colorants: Foods, Drugs, Cosmetics, and Medical Devices, 1st ed.; Wiley Publishing: New York, NY, USA, 1991. [Google Scholar]
- Pasias, I.; Asimakopoulos, A.; Thomaidis, N. Food colours for bakery products, snack foods, dry soup mixes, and seasonings. In Colour Additives for Foods and Beverages, 1st ed.; Scotter, M.J., Ed.; Woodhead Publishing: Duxford, UK, 2015; pp. 211–226. [Google Scholar]
- Carocho, M.; Morales, P.; Ferreira, I.C.F.R. Natural Food Additives: Quo Vadis? Trends Food Sci. Technol. 2015, 45, 284–295. [Google Scholar] [CrossRef]
- Weiss, B. Synthetic Food Colors and Neurobehavioral Hazards: The View from Environmental Health Research. Environ. Health Perspect. 2011, 120, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Potera, C. The Artificial Food Dye Blues. Environ. Health Perspect. 2010, 118, 428–430. [Google Scholar] [CrossRef] [PubMed]
- Leong, H.Y.; Show, P.L.; Lim, M.H.; Ooi, C.W.; Ling, T.C. Natural Red Pigments from Plants and Their Health Benefits: A Review. Food Rev. Int. 2018, 34, 463–482. [Google Scholar] [CrossRef]
- Timberlake, C.F.; Henry, B.S. Plant Pigments as Natural Food Colours. Endeavour 1986, 10, 31–36. [Google Scholar] [CrossRef]
- Shipp, J.; Abdel-Aal, E.S.M. Food Applications and Physiological Effects of Anthocyanins as Functional Food Ingredients. Open Food Sci. J. 2010, 4, 7–22. [Google Scholar] [CrossRef]
- Sigurdson, G.T.; Tang, P.; Giusti, M.M. Natural Colorants: Food Colorants from Natural Sources. Annu. Rev. Food Sci. Technol. 2017, 28, 261–280. [Google Scholar] [CrossRef] [PubMed]
- Takeoka, G.; Dao, L. Anthocyanin. In Methods of Analysis for Functional Foods and Nutraceuticals, 1st ed.; Hurst, W.J., Ed.; Taylor & Francis Inc.: Boca Raton, FL, USA, 2002; pp. 219–241. [Google Scholar]
- Huang, M.; Ferraro, T. Phenolic Compounds in Food and Cancer Prevention. ACS Symp. Ser. Phenolic Compd. Food Their Eff. Health II 1992, 8–34. [Google Scholar] [CrossRef]
- Shimozono, H.; Kobori, M.; Shinmoto, H.; Tsushida, T. Suppression of the Melanogenesis of Mouse Melanoma B16 Cells by Sweet Potato Extract. Nippon Shokuhin Kagaku Kogaku Kaishi 1996, 43, 313–317. [Google Scholar] [CrossRef]
- Tsai, P.; Mcintosh, J.; Pearce, P.; Camden, B.; Jordan, B.R. Anthocyanin and Antioxidant Capacity in Roselle (Hibiscus sabdariffa L.) Extract. Food Res. Int. 2002, 35, 351–356. [Google Scholar] [CrossRef]
- Duangmal, K.; Saicheua, B.; Sueeprasan, S. Colour evaluation of freeze-dried roselle extract as a natural food colorant in a model system of a drink. LWT 2008, 41, 1437–1445. [Google Scholar] [CrossRef]
- Wrolstad, R.E. Anthocyanins. In Natural Food Colorants: Science and Technology, 1st ed.; Lauro, G.J., Francis, F.J., Eds.; Taylor & Francis Inc.: Boca Raton, FL, USA, 2000. [Google Scholar]
- Horbowicz, M.; Kosson, R.; Grzesiuk, A.; Debski, H. Anthocyanins of Fruits and Vegetables—Their Occurrence, Analysis and Role in Human Nutrition. Veg. Crops Res. Bull. 2008, 68, 5–22. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and Anthocyanins: Colored Pigments as Food, Pharmaceutical Ingredients, and the Potential Health Benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef]
- Laleh, G.H.; Frydoonfar, H.; Heidary, R.; Jameei, R.; Zare, S. The Effect of Light, Temperature, pH and Species on Stability of Anthocyanin Pigments in Four Berberis Species. Pakistan J. Nutr. 2006, 5, 90–92. [Google Scholar] [CrossRef]
- He, J.; Giusti, M.M. Anthocyanins: Natural Colorants with Health-promoting Properties. Annu. Rev. Food Sci. Technol. 2010, 1, 163–187. [Google Scholar] [CrossRef]
- Ahmed, M.; Akter, M.S.; Lee, J.C.; Eun, J.B. Encapsulation by Spray Drying of Bioactive Components, Physicochemical and Morphological Properties from Purple Sweet Potato. LWT 2010, 43, 1307–1312. [Google Scholar] [CrossRef]
- Cortez, R.; Luna-Vital, D.A.; Margulis, D.; Gonzalez de Mejia, E. Natural Pigments: Stabilization Methods of Anthocyanins for Food Applications. Compr. Rev. Food Sci. Food Saf. 2016, 16, 180–198. [Google Scholar] [CrossRef]
- Francis, F.; Markakis, P.C. Food Colorants: Anthocyanins. Crit. Rev. Food Sci. Nutr. 1989, 28, 273–314. [Google Scholar] [CrossRef]
- Stintzing, F.C.; Carle, R. Functional Properties of Anthocyanins and Betalains in Plants, Food, and in Human Nutrition. Trends Food Sci. Technol. 2004, 15, 19–38. [Google Scholar] [CrossRef]
- Henry, B.S. Natural Food Colours. In Natural Food Colorants, 2nd ed.; Hendry, G.A.F., Houghton, J.D., Eds.; Springer: New York, NY, USA, 1996; pp. 39–78. [Google Scholar]
- Ioannou, I.; Hafsa, I.; Hamdi, S.; Charbonnel, C.; Ghoul, M. Review of the Effects of Food Processing and Formulation on Flavonol and Anthocyanin Behaviour. J. Food Eng. 2012, 111, 208–217. [Google Scholar] [CrossRef]
- Jackman, R.L.; Yada, R.Y.; Tung, M.A.; Speers, R.A. Anthocyanins as Food Colorants a Review. J. Food Biochem. 1987, 11, 201–247. [Google Scholar] [CrossRef]
- Bakowska-Barczak, A. Acylated Anthocyanins as Stable, Natural Food Colorants—A Review. Polish J. Food Nutr. Sci. 2005, 14, 107–116. [Google Scholar]
- Giusti, M.M.; Wrolstad, R.E. Acylated Anthocyanins from Edible Sources and Their Applications in Food Systems. Biochem. Eng. J. 2003, 14, 217–225. [Google Scholar] [CrossRef]
- Odake, K.; Terahara, N.; Saito, N.; Toki, K.; Honda, T. Chemical Structures of Two Anthocyanins from Purple Sweet Potato, Ipomoea batatas. Phytochemistry 1992, 31, 2127–2130. [Google Scholar] [CrossRef]
- Ghosh, D.; Konishi, T. Anthocyanins and Anthocyanin-rich Extracts: Role in Diabetes and Eye Function. Asia Pac. J. Clin. Nutr. 2007, 16, 200–208. [Google Scholar] [CrossRef]
- Islam, S. Sweetpotato (Ipomoea batatas L.) Leaf: Its Potential Effect on Human Health and Nutrition. J. Food Sci. 2006, 71, R13–R21. [Google Scholar] [CrossRef]
- Lebot, V. Tropical Root and Tuber Crops: Cassava, Sweet Potato, Yams and Aroids, 2nd ed.; CABI: Wallingford, UK, 2019. [Google Scholar]
- Miyazaki, T.; Tsuzuki, W.; Suzuki, T. Composition and Structure of Anthocyanins in the Periderm and Flesh of Sweet Potatoes. Engei Gakkai Zasshi 1991, 60, 217–224. [Google Scholar] [CrossRef]
- Shi, Z.; Bassa, I.; Gabriel, S.; Francis, F. Anthocyanin Pigments of Sweet Potatoes—Ipomoea batatas. J. Food Sci. 1992, 57, 755–757. [Google Scholar] [CrossRef]
- Sun, H.; Mu, T.; Xi, L.; Zhang, M.; Jingwang, C. Sweet potato (Ipomoea batatas L.) Leaves as Nutritional and Functional Foods. Food Chem. 2014, 156, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Thu, N.N.; Sakurai, C.; Uto, H.; Lien, D.T.K.; Yamamoto, S.; Ohmori, R.; Kondo, K.; Chuyen, N.V. The Polyphenol Content and Antioxidant Activities of the Main Edible Vegetables in Northern Vietnam. J. Nutr. Sci. Vitaminol. 2004, 50, 203–210. [Google Scholar] [CrossRef]
- Truong, V.; Mcfeeters, R.; Thompson, R.; Dean, L.; Shofran, B. Phenolic Acid Content and Composition in Leaves and Roots of Common Commercial Sweetpotato (Ipomea batatas L.) Cultivars in the United States. J. Food Sci. 2007, 72, C343–C349. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Liu, L.; Hu, B.; Sun, Y.; Ye, H.; Ma, D.; Zeng, X. TPC in the Leaves of 116 Sweet Potato (Ipomoea batatas L.) Varieties and Pushu 53 Leaf Extracts. J. Food Compost. Anal. 2010, 23, 599–604. [Google Scholar] [CrossRef]
- Yoshimoto, M.; Yahara, S.; Okuno, S.; Islam, M.S.; Ishiguro, K.; Yamakawa, O. Antimutagenicity of Mono-, Di-, and Tricaffeoylquinic Acid Derivatives Isolated from Sweetpotato (Ipomoea batatas L.) Leaf. Biosci. Biotechnol. Biochem. 2002, 66, 2336–2341. [Google Scholar] [CrossRef]
- Islam, M.S.; Yoshimoto, M.; Terahara, N.; Yamakawa, O. Anthocyanin Compositions in Sweetpotato (Ipomoea batatas L.) leaves. Biosci. Biotechnol. Biochem. 2002, 66, 2483–2486. [Google Scholar] [CrossRef] [PubMed]
- Villareal, R.L.; Tsou, S.C.; Chiu, S.C.; Lai, S.H. Use of Sweet Potato (Ipomoea batatas) Leaf Tips as Vegetables III. Organoleptic Evaluation. Exp. Agric. 1979, 15, 123. [Google Scholar] [CrossRef]
- Odake, K. Characteristics of Food Color Pigments Derived from Ayamurasaki. Proceedings of International Workshop on Sweetpotato Production System Toward the 21st Century, KNAES, Miyazaki, Japan, 9–10 December 1997; Labonte, D.R., Yamashita, M., Mochida, H., Eds.; National Agricultural Research Center for Kyushu Okinawa Region: Fukuoka, Japan, 1997; pp. 303–309. [Google Scholar]
- Odake, K.; Hatanak, A.; Kajiwara, T.; Muroi, T.; Nishiyama, T.; Yamakawa, O.; Terahara, N.; Yamaguchi, M. Evaluation Method and Breeding of Purple Sweetpotato “Yamagawamurasaki” (Ipomoea batatas) for Raw Material of Food Colorants. Nippon Shokuhin Kogyo Gakkaishi 1994, 41, 287–293. [Google Scholar] [CrossRef]
- Philippine Rural Development Project. Available online: http://www.drive.daprdp.net/iplan/pcip/PCIP%20Tarlac%20Sweetpotato%2020150522%20(1)%20(1).pdf (accessed on 5 May 2018).
- Philippine Statistics Authority (PSA). Available online: https://psa.gov.ph/sites/default/files/Major%20Vegetables%20and%20Rootcrops%20Q4%20Bulletin%2C%20October-December%202017.pdf (accessed on 5 May 2018).
- Cevallos-Casals, B.A.; Cisneros-Zevallos, L. Stability of Anthocyanin-based Aqueous Extracts of Andean Purple Corn and Red-fleshed Sweet Potato Compared to Synthetic and Natural Colorants. Food Chem. 2004, 86, 69–77. [Google Scholar] [CrossRef]
- He, X.L.; Li, X.L.; Lv, Y.P.; He, Q. Composition and Color Stability of Anthocyanin-based Extract from Purple Sweet Potato. Food Sci. Technol. 2015, 35, 468–473. [Google Scholar] [CrossRef]
- Rumbaoa, R.G.O.; Cornago, D.F.; Geronimo, I.M. Phenolic Content and Antioxidant Capacity of Philippine Sweet Potato (Ipomoea batatas) Varieties. Food Chem. 2009, 113, 1133–1138. [Google Scholar] [CrossRef]
- Song, J.; Li, D.; Liu, C.; Zhang, Y. Optimized Microwave-assisted Extraction of Total Phenolics (TP) from Ipomoea batatas Leaves and its Antioxidant Activity. Innov. Food Sci. Emerg. Technol. 2011, 12, 282–287. [Google Scholar] [CrossRef]
- Liao, W.C.; Lai, Y.-C.; Yuan, M.-C.; Hsu, Y.-L.; Chan, C.-F. Antioxidative Activity of Water Extract of Sweet Potato Leaves in Taiwan. Food Chem. 2011, 127, 1224–1228. [Google Scholar] [CrossRef]
- Kong, J.-M.; Chia, L.-S.; Goh, N.-K.; Chia, T.-F.; Brouillard, R. Review Analysis and Biological Activities of Anthocyanins. Phytochemistry 2003, 64, 923–933. [Google Scholar] [CrossRef]
- Bhuyan, D.J.; Van Vuong, Q.; Chalmers, A.C.; van Altena, I.A.; Bowyer, M.C.; Scarlett, C.J. Microwave-assisted extraction of Eucalyptus robusta leaf for the optimal yield of total phenolic compounds. Ind. Crops Prod. 2015, 69, 290–299. [Google Scholar] [CrossRef]
- Binasoy, J.P. Effects of Pasteurization on the Total Phenolic Content, Radical Scavenging Activity, and Physicochemical Characteristics of Sweet Potato (Ipomoea batatas) Leaves an Tips Beverage. Bachelor’s Thesis, University of the Philippines Diliman, Quezon City, Philippines, March 2011. [Google Scholar]
- Kala, H.K.; Mehta, R.; Sen, K.K.; Tandey, R.; Mandal, V. Critical Analysis of Research Trends and Issues in Microwave Assisted Extraction of Phenolics: Have We Really Done Enough. Trends Analyt. Chem. 2016, 85, 140–152. [Google Scholar] [CrossRef]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Villarino, C.B.; Jayasena, V.; Coorey, R.; Chakrabarti-Bell, S.; Johnson, S. Optimization of Formulation and Process of Australian Sweet Lupin (ASL)-Wheat Bread. LWT 2015, 61, 359–367. [Google Scholar] [CrossRef]
- McGuire, R.G. Reporting of Objective Color Measurements. Hortic. Sci. 1992, 27, 1254–1255. [Google Scholar] [CrossRef]
- McLellan, M.R.; Lind, L.R.; Kime, R.W. Hue Angle Determinations and Statistical Analysis for Multiquadrant Hunter L,a,b Data. J. Food Qual. 1995, 18, 235–240. [Google Scholar] [CrossRef]
- Reyes, L.F.; Cisneros-Zevallos, L. Degradation Kinetics and Colour of Anthocyanins in Aqueous Extracts of Purple- and Red-flesh Potatoes (Solanum tuberosum L.). Food Chem. 2007, 100, 885–894. [Google Scholar] [CrossRef]
- Sadilova, E.; Carle, R.; Stintzing, F.C. Thermal Degradation of Anthocyanins and its Impact on Color and In Vitro Antioxidant Capacity. Mol. Nutr. Food Res. 2007, 51, 1461–1471. [Google Scholar] [CrossRef] [PubMed]
- Sadilova, E.; Stintzing, F.; Carle, R. Thermal Degradation of Acylated and Nonacylated Anthocyanins. Food Chem. Toxicol. 2006, 71, 504–512. [Google Scholar] [CrossRef]
- Loypimai, P.; Moongngarm, A.; Chottanom, P. Thermal and pH Degradation Kinetics of Anthocyanins in Natural Food Colorant Prepared from Black Rice Bran. J. Food Sci. Technol. 2016, 53, 461–470. [Google Scholar] [CrossRef]
- Mori, K.; Goto-Yamamoto, N.; Kitayama, M.; Hashizume, K. Loss of Anthocyanins in Red-wine Grape Under High Temperature. J. Exp. Bot. 2007, 58, 1935–1945. [Google Scholar] [CrossRef] [PubMed]
- Heredia, F.; Francia-Aricha, E.; Rivas-Gonzalo, J.; Vicario, I.; Santos-Buelga, C. Chromatic Characterization of Anthocyanins from Red Grapes—I. pH Effect. Food Chem. 1998, 63, 491–498. [Google Scholar] [CrossRef]
Standard Order | Block | Point Type | X1, RMW (g per 500 mL d’H2O) a | X2, BT (min) b | X2, MT (min) c |
---|---|---|---|---|---|
1 | Block 1 (Day 1) | Factorial | 50.00 | 10.00 | 2.00 |
2 | Factorial | 125.00 | 10.00 | 2.00 | |
3 | Factorial | 50.00 | 45.00 | 8.00 | |
4 | Factorial | 125.00 | 45.00 | 8.00 | |
5 | Center | 87.50 | 27.50 | 5.00 | |
6 | Center | 87.50 | 27.50 | 5.00 | |
7 | Center | 87.50 | 27.50 | 5.00 | |
8 | Block 2 (Day 2) | Axial | 34.47 | 27.50 | 5.00 |
9 | Axial | 140.53 | 27.50 | 5.00 | |
10 | Axial | 87.50 | 2.75 | 0.76 | |
11 | Axial | 87.50 | 52.25 | 9.24 | |
12 | Center | 87.50 | 27.50 | 5.00 | |
13 | Center | 87.50 | 27.50 | 5.00 | |
14 | Center | 87.50 | 27.50 | 5.00 |
Factor | Parameter | Units | Actual Values | Coded Values | ||
---|---|---|---|---|---|---|
Minimum | Maximum | Minimum | Maximum | |||
X1 | Raw material weight (RMW) | g per 500 mL water | 50 | 125 | −1 | 1 |
X2 a | Boiling time (BT) | min | 10 | 45 | −1 | 1 |
X2 b | Microwave extraction time (MT) | min | 2 | 8 | −1 | 1 |
Factor b | Inubi SPLC | Red SPLC | ||||
---|---|---|---|---|---|---|
L* | C* | H° | L* | C* | H° | |
Constant | 63.337 | 12.365 | 21.523 | 32.466 | 63.880 | 22.210 |
RMW | −0.115 a | 0.113 a | 0.145 a | −0.044 a | −0.124 a | −0.027 |
BT | −0.948 a | 1.111 a | −0.207 a | −0.239 | −0.666 a | −0.264 a |
RMW × BT | -- | −1.782 × 10−3 | -- | -- | 2.608 × 10−3 a | -- |
RMW2 | -- | 2.245 × 10−4 | -- | -- | -- | -- |
BT2 | 0.012 a | −0.013 a | -- | 3.841 × 10−3 | 5.214 × 103 a | -- |
Mean | 38.13 | 38.32 | 28.56 | 25.62 | 45.86 | 12.60 |
SD | 2.26 | 2.44 | 2.92 | 1.42 | 0.63 | 3.20 |
R2 | 0.9105 | 0.8770 | 0.8006 | 0.6509 | 0.9733 | 0.6356 |
R2adj | 0.8807 | 0.8359 | 0.7608 | 0.5345 | 0.9599 | 0.5627 |
Adeq. Precision c | 16.261 | 13.382 | 11.622 | 6.828 | 25.581 | 7.635 |
%CV | 5.94 | 6.36 | 10.24 | 5.56 | 1.38 | 25.44 |
Lack of fit | 0.12 | 0.06 | 0.81 | 0.19 | 0.71 | 0.48 |
Factor b | Inubi SPLC | Red SPLC | |||
---|---|---|---|---|---|
L* | C* | H° | L* | C* | |
Constant | 71.563 | 1.1483 | −162.03 | 105.789 | −20.354 |
RMW | -- | −5.358 × 10−3 a | 0.649 | −0.537 | -- |
MT | −3.731 a | −0.218 a | 52.85 a | −14.44 a | 22.351 a |
RMW × MT | -- | 2.385 × 10−4 | 0.022 | −7.119 × 10−3 | -- |
RMW2 | -- | 2.000 × 10−5 a | −4.504 × 10−3 | 3.045 × 10−3 | -- |
MT2 | -- | 0.014 a | −3.953 a | 0.945 a | −1.620 a |
Mean | 52.91 | 0.27 | 11.48 | 37.77 | 42.56 |
SD | 4.36 | 0.026 | 14.45 | 5.75 | 7.28 |
R2 | 0.8272 | 0.9880 | 0.9473 | 0.9265 | 0.8902 |
R2adj | 0.8114 | 0.9795 | 0.9097 | 0.8741 | 0.8683 |
Adeq. Precision c | 15.674 | 28.293 | 13.310 | 11.710 | 14.194 |
%CV | 8.25 | 9.62 | 125.80 | 15.23 | 17.11 |
Lack-of-fit | 0.239 | 0.077 | 0.002 | 0.001 | <0.0001 |
Response c | Conventional Extraction | Microwave-Assisted Extraction | ||
---|---|---|---|---|
Inubi SPLC-A 1 | Inubi SPLC-B 2 | Inubi SPLC-A 4 | Inubi SPLC-B 5 | |
Lightness (L*) | 35.04 ± 1.93 b | 39.97 ± 1.89 | 81.23 ± 0.01 ab | 88.01 ± 0.01 ab |
Chroma (C*) | 41.34 ± 0.56 b | 40.12 ± 1.91 | 15.46 ± 0.01 | 8.65 ± 0.01 ab |
Hue (H°) | 26.54 ± 3.71 | 33.38 ± 0.88 b | −82.14 ± 0.05 ab | 75.15 ± 0.06 ab |
Red SPLC-A 2 | Red SPLC-B 3 | Red SPLC-A 4 | Red SPLC-B 6 | |
Lightness (L*) | 23.41 ± 0.81 | 23.90 ± 0.16 b | 39.70 ± 3.71 | 25.00 ± 0.95 |
Chroma (C*) | 46.57 ± 0.20 | 45.08 ± 0.36 b | 46.60 ± 4.99 | 49.90 ± 0.79 |
Hue (H°) | 15.09 ± 0.57 | 8.20 ± 1.36 b | 5.60 ± 1.47 b | 18.60 ± 1.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagulayan, J.M.D.G.; Mendoza, A.S.V.; Gascon, F.S.; Aningat, J.C.C.; Rustia, A.S.; Villarino, C.B.J. Effects of Process Parameters on the Color Quality of Anthocyanin-Based Colorants from Conventional and Microwave-Assisted Aqueous Extraction of Sweet Potato (Ipomoea batatas L.) Leaf Varieties. Proceedings 2021, 70, 103. https://doi.org/10.3390/foods_2020-07741
Pagulayan JMDG, Mendoza ASV, Gascon FS, Aningat JCC, Rustia AS, Villarino CBJ. Effects of Process Parameters on the Color Quality of Anthocyanin-Based Colorants from Conventional and Microwave-Assisted Aqueous Extraction of Sweet Potato (Ipomoea batatas L.) Leaf Varieties. Proceedings. 2021; 70(1):103. https://doi.org/10.3390/foods_2020-07741
Chicago/Turabian StylePagulayan, Jin Mark D. G., Aprille Suzette V. Mendoza, Fredelyn S. Gascon, Jan Carlo C. Aningat, Abigail S. Rustia, and Casiana Blanca J. Villarino. 2021. "Effects of Process Parameters on the Color Quality of Anthocyanin-Based Colorants from Conventional and Microwave-Assisted Aqueous Extraction of Sweet Potato (Ipomoea batatas L.) Leaf Varieties" Proceedings 70, no. 1: 103. https://doi.org/10.3390/foods_2020-07741
APA StylePagulayan, J. M. D. G., Mendoza, A. S. V., Gascon, F. S., Aningat, J. C. C., Rustia, A. S., & Villarino, C. B. J. (2021). Effects of Process Parameters on the Color Quality of Anthocyanin-Based Colorants from Conventional and Microwave-Assisted Aqueous Extraction of Sweet Potato (Ipomoea batatas L.) Leaf Varieties. Proceedings, 70(1), 103. https://doi.org/10.3390/foods_2020-07741