Spatiotemporal Graph Imaging Associated with Multilevel Atomic Excitations †
Abstract
:1. Introduction
2. The Atomic System
3. Graph Imaging
4. Image Entropy
- A.
- The probability, , for the node to be connected,
- B.
- Shannon entropy, , for rows in the transition matrix ,
- C.
- Conditional entropy, , for column nodes given row nodes,
- D.
- Mutual information, , gained through the network:
5. Numerical Results
6. Discussion
Funding
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute | HF | Hyperfine structure |
DGM | Dynamical graph model | DMC | Density matrix components |
ITSDM | Irreducible tensorial set of the density matrix | SVD | Singular value decomposition |
MI | Mutual information | RMBE | Reduced Maxwell–Bloch equations |
References
- Rawlinson, J. Rovibrational Dynamics of Nuclei and Molecules. Doctoral Thesis, University of Cambridge, Cambridge, UK, 2020. [Google Scholar] [CrossRef]
- Rawlinson, J.I. Quantum graph model for rovibrational states of protonated methane. J. Chem. Phys. 2019, 151, 164303. [Google Scholar] [CrossRef] [PubMed]
- Fabri, C.; Csaszar, A. G. Vibrational quantum graphs and their application to the quantum dynamics of CH5+. Phys. Chem. Chem. Phys. 2018, 20, 16913. [Google Scholar] [CrossRef] [PubMed]
- Alhasan, A.M. Graph entropy associated with multilevel atomic excitation. Proceedings 2020, 46, 9. [Google Scholar] [CrossRef]
- Bonmati, E.; Bardera, A.; Feixas, M.; Boada, I. Novel brain complexity measures based on information theory. Entropy 2018, 20, 491. [Google Scholar] [CrossRef] [PubMed]
- Lee, J. D.; Maggioni, M. Multiscale analysis of time series of graphs. In Proceedings of the International Conference on Sampling Theory and Applications, Singapore, 2–6 May 2011. [Google Scholar]
- Wong, T.G. Isolated vertices in continuous-time quantum walks on dynamic graphs. Phys. Rev. A 2019, 100, 062325. [Google Scholar] [CrossRef]
- Drinko, A.; Andrade F., M.; Bazeia, D. Simple quantum graphs proposal for quantum devices. Eur. Phys. J. Plus 2020, 135, 451. [Google Scholar] [CrossRef]
- Shuman, D.I.; Narang, S.K.; Frossard, P.; Ortega, A.; Vandergheynst, P. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 2013, 30, 83–98. [Google Scholar] [CrossRef]
- Demirkaya, O.; Musa, A.; Prasanna, S. Image Processing with MATLAB: Applications in Medicine and Biology; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar] [CrossRef]
- Qidwai, U.; Chen, C.H. Digital Image Processing. An Algorithmic Approach with MATLAB, 1st ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2009. [Google Scholar]
- Dehmer, M.; Emmert–Streib, F.; Chen, Z.; Li, X.; Shi, Y. Mathematical Foundations and Applications of Graph Entropy; Wiley: New York, NY, USA, 2016. [Google Scholar]
- Sarkar, S.; Pandey, B. A study on the statistical significance of mutual information between morphology of a galaxy and its large-scale environment. Mon. Not. R. Astron. Soc. (MNRAS) 2020, 2020 497, 4077–4090. [Google Scholar] [CrossRef]
- Fano, U.; Racah, G. Irreducible Tensorial Sets; Academic Press: New York, NY, USA, 1959. [Google Scholar]
- Alhasan, A.M. Entropy associated with information storage and its retrieval. Entropy 2015, 17, 5920–5937. [Google Scholar] [CrossRef]
- Fiutak, J.; Miklaszewski, W.; Alhasan, A.M. The effect of hyperfine structure on the collisional relaxation of the thallium atom excited by laser beam. II. Transient population inversions. Z Phys. D Atoms Mol. Clust. 1989, 14, 195–203. [Google Scholar] [CrossRef]
- Alhasan, A.M.; Statistical Measures for the Dynamical Atom-Field Coupling Constants. Statistical Measures for the Dynamical Atom-Field Coupling Constants. Submitted to 1st International Electronic Conference on Applied Sciences. Section A. Available online: https://sciforum.net/conference/ASEC2020#sessions (accessed on 6 November 2020).
- Giovanna Morigi, G.; Franke-Arnold, S.; Oppo, G. Phase-dependent interaction in a four-level atomic configuration. Phys. Rev. A. 2002, 66, 053409. [Google Scholar] [CrossRef]
- Gudkov, V. Generalized entropies of complex and random networks. In Mathematical Foundations and Applications of Graph Entropy; Dehmer, M., Emmert–Streib, F., Chen, Z., Li, X., Shi, Y., Eds.; Wiley: New York, NY, USA, 2016. [Google Scholar]
- Alhasan, A.M. Density matrix description of fast and slow light propagation in sodium vapour. Open Syst. Inf. Dyn. 2009, 16, 103–125. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhasan, A.M. Spatiotemporal Graph Imaging Associated with Multilevel Atomic Excitations †. Proceedings 2020, 67, 16. https://doi.org/10.3390/ASEC2020-07886
Alhasan AM. Spatiotemporal Graph Imaging Associated with Multilevel Atomic Excitations †. Proceedings. 2020; 67(1):16. https://doi.org/10.3390/ASEC2020-07886
Chicago/Turabian StyleAlhasan, Abu Mohamed. 2020. "Spatiotemporal Graph Imaging Associated with Multilevel Atomic Excitations †" Proceedings 67, no. 1: 16. https://doi.org/10.3390/ASEC2020-07886
APA StyleAlhasan, A. M. (2020). Spatiotemporal Graph Imaging Associated with Multilevel Atomic Excitations †. Proceedings, 67(1), 16. https://doi.org/10.3390/ASEC2020-07886