Electrochemical Characterization of Nitrocellulose Membranes towards Bacterial Detection in Water †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Biological Procedures
2.2.1. Bacterial Strains and Growth Conditions
2.2.2. Phage Endolysins Expression and Purification
2.2.3. Preparation and Characterization of the CBD Biointerface for Specific Bacteria Immobilization
2.3. Parallel Plate Setup and Dielectric Measurement
2.4. IDE Setup and Impedance Measurement
2.4.1. Interdigital Electrodes Design and Fabrication on NC Membranes
2.4.2. Interdigital Electrodes Impedance Sensing
2.5. Bacteria Detection in Physiological Buffers
3. Results and Discussion
3.1. Characterization of the CBD Biointerface
3.1.1. Optical Characterization of the CBD Biointerface
3.1.2. Electrical Characterization of Dry and CBD-Biofunctionalized Nitrocellulose Membranes
3.2. Detection of B. thuringiensis Cells with the Parallel Plate Setup
3.3. Validation of the Parallel Plate Measurement with the IDE Setup
3.3.1. Gold IDE Deposited on Nitrocellulose Membranes
3.3.2. Comparison between Parallel Plate Measurements and IDE Measurements
3.4. Perspectives for Future Works
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO Report. 2019. Available online: https://www.who.int/news-room/fact-sheets/detail/drinking-water (accessed on 25 September 2020).
- Váradi, L.; Luo, J.L.; Hibbs, D.E.; Perry, J.D.; Anderson, R.J.; Orenga, S.; Groundwater, P.W. Methods for the detection and identification of pathogenic bacteria: Past, present, and future. Chem. Soc. Rev. 2017, 46, 4818–4832. [Google Scholar] [CrossRef] [PubMed]
- Lazcka, O.; Del Campo, F.J.; Muñoz, F.X. Pathogen detection: A perspective of traditional methods and biosensors. Biosens. Bioelectron. 2007, 22, 1205–1217. [Google Scholar] [CrossRef] [PubMed]
- Mao, K.; Zhang, H.; Yang, Z. Can a Paper-Based Device Trace COVID-19 Sources with Wastewater-Based Epidemiology? Environ. Sci. Technol. 2020, 54, 3733–3735. [Google Scholar] [CrossRef]
- Parolo, C.; Merkoçi, A. Paper-based nanobiosensors for diagnostics. Chem. Soc. Rev. 2013, 42, 450–457. [Google Scholar] [CrossRef]
- Martinez, A.W.; Phillips, S.T.; Whitesides, G.M.; Carrilho, E. Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices. Anal. Chem. 2010, 82, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Busa, L.S.A.; Mohammadi, S.; Maeki, M.; Ishida, A.; Tani, H.; Tokeshi, M. Advances in Microfluidic Paper-Based Analytical Devices for Food and Water Analysis. Micromachines 2016, 7, 86. [Google Scholar] [CrossRef]
- Merkoçi, A. Paper Based Sensors. Compr. Anal. Chem. 2020, 89, 2–464. [Google Scholar]
- EMD Millipore. Rapid Lateral Flow Test Strips—Considerations for Product Development; EMD Millipore: Burlington, MA, USA, 2013. [Google Scholar]
- Nie, Z.; Nijhuis, C.A.; Gong, J.; Chen, X.; Kumachev, A.; Martinez, A.W.; Narovlyansky, M.; Whitesides, G.M. Electrochemical sensing in paper-based microfluidic devices. Lab a Chip 2010, 10, 477–483. [Google Scholar] [CrossRef]
- Jenkins, G.; Wang, Y.; Xie, Y.L.; Wu, Q.; Huang, W.; Wang, L.; Yang, X. Printed electronics integrated with paper-based microfluidics: New methodologies for next-generation health care. Microfluid. Nanofluidics 2014, 19, 251–261. [Google Scholar] [CrossRef]
- Tobjörk, D.; Österbacka, R. Paper Electronics. Adv. Mater. 2011, 23, 1935–1961. [Google Scholar] [CrossRef]
- Smith, S.; Land, K.; Joubert, T.-H. Printed Functionality for Point-of-Need Diagnostics in Resource-Limited Settings. In Proceedings of the 2020 IEEE 20th International Conference on Nanotechnology (IEEE-NANO), Montreal, QC, Canada, 29–31 July 2020; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2020; pp. 288–292. [Google Scholar]
- Rajapaksha, R.; Uda, M.A.; Hashim, U.; Gopinath, S.C.B.; Fernando, C. Impedance based Aluminium Interdigitated Electrode (Al-IDE) Biosensor on Silicon Substrate for Salmonella Detection. In Proceedings of the 2018 IEEE International Conference on Semiconductor Electronics (ICSE), Kuala Lumpur, Malaysia, 15–17 August 2018; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2018; pp. 93–96. [Google Scholar]
- Thivina, V.; Hashim, U.; Arshad, M.M.; Ruslinda, A.; Ayoib, A.; Nordin, N.K.S. Design and fabrication of Interdigitated Electrode (IDE) for detection of Ganoderma boninense. In Proceedings of the 2016 IEEE International Conference on Semiconductor Electronics (ICSE), Kuala Lumpur, Malaysia, 17–19 August 2016; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2016; pp. 50–53. [Google Scholar]
- Pal, S.; Alocilja, E.; Downes, F.P. Nanowire labeled direct-charge transfer biosensor for detecting Bacillus species. Biosens. Bioelectron. 2007, 22, 2329–2336. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Nartker, S.; Wiederoder, M.; Miller, H.; Hochhalter, D.; Drzal, L.T.; Alocilja, E.C. Novel Biosensor Based on Electrospun Nanofiber and Magnetic Nanoparticles for the Detection of E. coli O157:H7. IEEE Trans. Nanotechnol. 2011, 11, 676–681. [Google Scholar] [CrossRef]
- Chuang, C.-H.; Shaikh, M.O. Label-free impedance biosensors for Point-of-Care diagnostics. Point-of-Care Diagn. New Prog. Perspect. 2017, 3, 171–201. [Google Scholar]
- Couniot, N.; Vanzieleghem, T.; Rasson, J.; Van Overstraeten-Schlögel, N.; Poncelet, O.; Mahillon, J.; Francis, L.; Flandre, D. Lytic enzymes as selectivity means for label-free, microfluidic and impedimetric detection of whole-cell bacteria using ALD-Al2O3 passivated microelectrodes. Biosens. Bioelectron. 2015, 67, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Cimafonte, M.; Fulgione, A.; Gaglione, R.; Papaianni, M.; Capparelli, R.; Arciello, A.; Censi, S.B.; Borriello, G.; Velotta, R.; Della Ventura, B. Screen Printed Based Impedimetric Immunosensor for Rapid Detection of Escherichia coli in Drinking Water. Sensors 2020, 20, 274. [Google Scholar] [CrossRef]
- Kong, M.; Sim, J.; Kang, T.; Nguyen, H.H.; Park, H.K.; Chung, B.H.; Ryu, S. A novel and highly specific phage endolysin cell wall binding domain for detection of Bacillus cereus. Eur. Biophys. J. 2015, 44, 437–446. [Google Scholar] [CrossRef]
- Ebai, J.; Ekim, Y.-T.; Ryu, S.; Lee, J.-H. Biocontrol and Rapid Detection of Food-Borne Pathogens Using Bacteriophages and Endolysins. Front. Microbiol. 2016, 7, 474. [Google Scholar] [CrossRef]
- Leprince, A.; Nuytten, M.; Gillis, A.; Mahillon, J. Characterization of PlyB221 and PlyP32, Two Novel Endolysins Encoded by Phages Preying on the Bacillus cereus Group. Viruses 2020, 12, 1052. [Google Scholar] [CrossRef]
- Liang, T.; Zou, X.; Mazzeo, A.D. A flexible future for paper-based electronics. In Proceedings of the Micro- and Nanotechnology Sensors, Systems, and Applications VIII 2016, Baltimore, MD, USA, 17–21 April 2016; Volume 9836, p. 98361. [Google Scholar] [CrossRef]
- Mamishev, A.V.; Sundara-Rajan, K.; Yang, F.; Du, Y.; Zahn, M. Interdigital sensors and transducers. Proc. IEEE 2004, 92, 808–845. [Google Scholar] [CrossRef]
- Igreja, R.; Dias, C. Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure. Sens. Actuators A Phys. 2004, 112, 291–301. [Google Scholar] [CrossRef]
- Le Brun, G.; Raskin, J.-P. Material and manufacturing process selection for electronics eco-design: Case study on paper-based water quality sensors. Procedia CIRP 2020, 90, 344–349. [Google Scholar] [CrossRef]
- Lagadic, L.; Caquet, T. Bacillus thuringiensis. Encyclopedia of Toxicology (Third Edition); Academic Press: Cambridge, MA, USA, 2014; pp. 355–359. ISBN 9780123864550. [Google Scholar]
- Dorken, G.; Ferguson, G.P.; French, C.E.; Poon, W.C.K. Aggregation by depletion attraction in cultures of bacteria producing exopolysaccharide. J. R. Soc. Interface 2012, 9, 3490–3502. [Google Scholar] [CrossRef]
- Agilent Technologies. Agilent E4991A RF Impedance/Material Analyzer: Installation and Quick Start Guide (Tenth Edition); Agilent Technologies: Santa Clara, CA, USA, 2012. [Google Scholar]
- Leroy, P.; Weigand, M.; Mériguet, G.; Zimmermann, E.; Tournassat, C.; Fagerlund, F.; Kemna, A.; Huisman, J.A. Spectral induced polarization of Na-montmorillonite dispersions. J. Colloid Interface Sci. 2017, 505, 1093–1110. [Google Scholar] [CrossRef] [PubMed]
- Gavish, N.; Promislow, K. Dependence of the dielectric constant of electrolyte solutions on ionic concentration: A microfield approach. Phys. Rev. E 2016, 94, 012611. [Google Scholar] [CrossRef] [PubMed]
- Peterson, B.W.; Sharma, P.K.; Van Der Mei, H.C.; Busscher, H.J. Bacterial Cell Surface Damage Due to Centrifugal Compaction. Appl. Environ. Microbiol. 2011, 78, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Martinac, B.; Saimi, Y.; Kung, C. Ion Channels in Microbes. Physiol. Rev. 2008, 88, 1449–1490. [Google Scholar] [CrossRef]
- Yao, L.; Wang, L.; Huang, F.; Cai, G.; Xi, X.; Lin, J. A microfluidic impedance biosensor based on immunomagnetic separation and urease catalysis for continuous-flow detection of E. coli O157:H7. Sens. Actuators B Chem. 2018, 259, 1013–1021. [Google Scholar] [CrossRef]
- Hassan, A.-R.H.A.-A.; De La Escosura-Muñiz, A.; Merkoçi, A. Highly sensitive and rapid determination of Escherichia coli O157:H7 in minced beef and water using electrocatalytic gold nanoparticle tags. Biosens. Bioelectron. 2015, 67, 511–515. [Google Scholar] [CrossRef]
- Larsen, D.A.; Wigginton, K.R. Tracking COVID-19 with wastewater. Nat. Biotechnol. 2020, 38, 1151–1153. [Google Scholar] [CrossRef]
ΔCdl [F] | ΔCNC [F] | |
---|---|---|
PP | + 1.65 × 10−9 | + 1.3 × 10−14 |
IDE | + 1.43 × 10−9 | + 9.9 × 10−15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brun, G.L.; Hauwaert, M.; Leprince, A.; Glinel, K.; Mahillon, J.; Raskin, J.-P. Electrochemical Characterization of Nitrocellulose Membranes towards Bacterial Detection in Water. Proceedings 2020, 60, 61. https://doi.org/10.3390/IECB2020-07080
Brun GL, Hauwaert M, Leprince A, Glinel K, Mahillon J, Raskin J-P. Electrochemical Characterization of Nitrocellulose Membranes towards Bacterial Detection in Water. Proceedings. 2020; 60(1):61. https://doi.org/10.3390/IECB2020-07080
Chicago/Turabian StyleBrun, Grégoire Le, Margo Hauwaert, Audrey Leprince, Karine Glinel, Jacques Mahillon, and Jean-Pierre Raskin. 2020. "Electrochemical Characterization of Nitrocellulose Membranes towards Bacterial Detection in Water" Proceedings 60, no. 1: 61. https://doi.org/10.3390/IECB2020-07080
APA StyleBrun, G. L., Hauwaert, M., Leprince, A., Glinel, K., Mahillon, J., & Raskin, J. -P. (2020). Electrochemical Characterization of Nitrocellulose Membranes towards Bacterial Detection in Water. Proceedings, 60(1), 61. https://doi.org/10.3390/IECB2020-07080