Conversion of Solid Biomass into Biochar: Act as a Green, Eco-Friendly Energy Source and a Substitute of Fossil Fuel Inputs †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Proximate and Ultimate Analysis
2.3. Gross Calorific Value (Heating Value) and Surface Area
3. Results and Discussion
3.1. Proximate and Ultimate Analyses CC, CS, CCch, and CSch
3.2. Gross Calorific Value (GCV) and Surface Area
4. Utilization Potential for Green Energy and Enhancement of Soil Fertility
5. Conclusions
Funding
Conflicts of Interest
References
- Protasio, T.D.P.; Junior, M.G.; Mirmehdi, S.; Trugilho, P.F.; Napoli, A.; Knovack, K.M. Combustion of biomass and charcoal made from babassu nutshell. Cerne 2017, 23, 1–10. [Google Scholar] [CrossRef]
- Tinwala, F.; Mohanty, P.; Parmar, S.; Patel, A.; Pant, K.K. Intermediate pyrolysis of agro-industrial biomasses in bench-scale pyrolyser: Product yields and its characterization. Bioresour. Technol. 2015, 188, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Barrow, C.J. Biochar: Potential for countering land degradation and for improving agriculture. Appl. Geogr. 2012, 34, 21–28. [Google Scholar] [CrossRef]
- Cser, H.; Boby, L. Technologies That Produce Electricity, Heat, and Fuel from Biomass Feedstocks; Integrated Biomass Supply Systems (IBSS): Knoxville, TN, USA, 2015; pp. 1–4. [Google Scholar]
- Lehmann, J.; Joseph, S. Biochar for environmental management: An introduction. In Biochar for Environmental Management Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscans: London, UK, 2009; pp. 1–12. [Google Scholar]
- Shackley, S.; Carter, S.; Knowles, T.; Middelink, E.; Haefele, S.; Sohi, S.; Cross, A.; Haszeldine, S. Sustainable gasification-biochar systems? A case-study of rice-husk gasification in Cambodia, Part 1: Context, chemical properties, environmental and health and safety issues. Energy Policy 2012, 42, 49–58. [Google Scholar] [CrossRef]
- Verheijen, F.; Jeffery, S.; Bastos, A.C.; Van Der Velde, M.; Diafas, I. Biochar Application to Soils: A Critical Scientific Review of Effects on Soil Properties. Processes and Functions; European Commission: Ispra, Italy, 2010. [Google Scholar]
- Verma, M.; Godbout, S.; Brar, S.K.; Solomatnikova, O.; Lemay, S.P.; Larouche, J.P. Biofuels Production from Biomass by Thermochemical Conversion Technologies. Int. J. Chem. Eng. 2012, 2012, 542426. [Google Scholar] [CrossRef]
- Lehmann, J. Bio-energy in the black. Front. Ecol. Environ. 2007, 5, 381–387. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Perrott, F.A.S.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef]
- Sohi, S.P. Carbon storage with benefits. Science 2012, 338, 1034–1035. [Google Scholar] [CrossRef]
- Liang, B.; Lehmann, J.; Solomon, D.; Sohi, S.; Thies, J.E.; Skjemstad, J.O.; Luizão, F.J.; Engelhard, M.H.; Neves, E.G.; Wirick, S. Stability of biomass derived black carbon in soils. Geochim. Cosmochim. Acta 2008, 72, 6069–6078. [Google Scholar] [CrossRef]
- Lee, Y.; Park, J.; Ryu, C.; Gang, K.S.; Yang, W.; Park, Y.K.; Jung, J.; Hyun, S. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C. Bioresour. Technol. 2013, 148, 196–201. [Google Scholar] [CrossRef]
- Fu, P.; Hu, S.; Xiang, J.; Sun, L.; Su, S.; Wang, J. Evaluation of the porous structure development of chars from pyrolysis of rice straw: Effects of pyrolysis temperature and heating rate. J. Anal. Appl. Pyrolysis 2012, 98, 177–183. [Google Scholar] [CrossRef]
- Mohanty, P.; Pant, K.K.; Naik, S.N.; Parikh, J.; Hornung, A.; Sahu, J.N. Synthesis of green fuels from biogenic waste through thermochemical route—The role of heterogeneous catalyst: A review. Renew. Sustain. Energy Rev. 2014, 38, 131–153. [Google Scholar] [CrossRef]
- Suman, S.; Gautam, S. Effect of pyrolysis time and temperature on the characterization of biochars derived from biomass. Energy Sources Part A Recovery Util. Environ. Eff. 2017, 39, 933–940. [Google Scholar] [CrossRef]
- Mena, H.L.E.; Pecora, A.A.B.; Beraldo, A.L. Slow Pyrolysis of Bamboo biomass: Analysis of Biochar properties. Chem. Eng. Trans. 2014, 37, 115–120. [Google Scholar]
- Couto, A.M.; Protásio, T.D.P.; Trugilho, P.F.; Neves, T.A.; Sa, V.A.D. Multivariate analysis applied to evaluation of Eucalyptus clones for bioenergy production. Cerne 2013, 19, 525–533. [Google Scholar] [CrossRef]
- Gupta, O.P. Fuels, Furnaces and Refractory, 1st ed.; Khanna Publication: Delhi, India, 1990. [Google Scholar]
- Zhang, G.; Zhang, O.; Sun, K.; Liu, X.; Zheng, W.; Zhaoil, Y. Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures. Environ. Pollut. 2011, 159, 2594–2601. [Google Scholar] [CrossRef]
- Jindo, K.; Mizumoto, H.; Sawada, Y.; Monedero, M.A.S.; Sonoki, T. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 2014, 11, 6613–6621. [Google Scholar] [CrossRef]
- Tao, G.; Lestander, T.A.; Geladi, P.; Xiong, S. Biomass properties in association with plant species and assortments I: A synthesis based on literature data of energy properties. Renew. Sustain. Energy Rev. 2012, 16, 3481–3506. [Google Scholar] [CrossRef]
- Purevsuren, B.; Avid, B.; Tesche, B.; Davaajav, A.Y. Biochar from Casein and Its Properties. J. Mater. Sci. 2003, 38, 2347–2351. [Google Scholar] [CrossRef]
- Aziz, S.; Yaseen, L.; Jamal, A.; Farooq, U.; Qureshi, Z.; Tauseef, I.; Haleem, S.K.; Ali, M.I. Fabrication of Biochar from Organic Wastes and its Effect on Wheat Growth and Soil Microflora. Pol. J. Environ. Stud. 2020, 29, 1069–1076. [Google Scholar] [CrossRef]
- Peng, X.; Ye, L.L.; Wang, C.H.; Zhou, H.; Sun, B. Temperature and duration-depend rice straw-derived biochar: Characteristics and its effects on soil properties of an Untisol in southern China. Soil Tillage Res. 2011, 112, 159–166. [Google Scholar] [CrossRef]
- Rafiq, M.K.; Bachmann, R.T.; Rafiq, M.T.; Shang, Z.; Joseph, S.; Long, R. Influence of Pyrolysis Temperature on Physico-Chemical Properties of Corn Stover (Zea mays L.), Biochar and Feasibility for Carbon Capture and Energy Balance. PLoS ONE 2016, 11, e156894. [Google Scholar] [CrossRef]
- Vassilev, S.; Baxter, D.; Andersen, L.; Vassileva, C. An overview of the composition and application of biomass ash. Part 2. Potential utilization, technological and ecological advantages and challenges. Fuel 2013, 105, 19–39. [Google Scholar] [CrossRef]
- Veksha, A.; Mclaughlin, H.; Layzell, D.B.; Hill, J.M. Pyrolysis of wood to biochar: Increasing yield while maintaining microporosity. Bioresour. Technol. 2014, 153, 173–179. [Google Scholar] [CrossRef]
- Mukherjee, A.; Zimmerman, A.R.; Harris, W. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 2011, 163, 247–255. [Google Scholar] [CrossRef]
- Wabel, M.I.A.; Omran, A.A.; Naggar, A.H.E.; Nadeem, M.; Usman, A.R.A. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol. 2013, 131, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Xu, C.; Chen, Z.; Zhang, S. Properties of biomass-derived biochars: Combined effects of operating conditions and biomass types. Bioresour. Technol. 2015, 192, 83–89. [Google Scholar] [CrossRef]
- Enders, A.; Hanley, K.; Whitman, T.; Joseph, S.; Lehmann, J. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 2012, 11, 4644–4653. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Chen, B.; Zhou, D.; Zhu, L. Transitional adsorption and partition on nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ. Sci. Technol. 2008, 42, 5137–5143. [Google Scholar] [CrossRef]
- Kloss, S.; Zehetner, F.; Dellantonio, A.; Hamid, R.; Ottner, F.; Liedtke, V.; Schwanninger, M.; Gerzabek, M.H.; Soja, G. Characterization of slow pyrolysis biochars: Effects of feedstocks and pyrolysis temperature on biochar properties. J. Environ. Qual. 2012, 41, 990–1000. [Google Scholar] [CrossRef] [PubMed]
- Medynska-Juraszek, A.; Ćwielag-Piasecka, I. Effect of Biochar Application on Heavy Metal Mobility in Soils Impacted by Copper Smelting Processes. Pol. J. Environ. Stud. 2020, 29, 1749–1757. [Google Scholar] [CrossRef]
* Characterization | Samples | |||
---|---|---|---|---|
Corn Cob (CC) | Coconut Shell (CS) | Corn Cob Char (CCch) | Coconut Shell Char (CSch) | |
Moisture% | 3.20 | 2.11 | 3.45 | 3.54 |
Ash % | 4.66 | 1.09 | 5.67 | 3.77 |
Volatile Matter% | 76.18 | 79.23 | 12.33 | 13.45 |
Fixed Carbon% | 15.96 | 17.57 | 78.55 | 81.24 |
Carbon% | 45.90 | 50.10 | 81.23 | 84.62 |
Hydrogen% | 5.58 | 6.74 | 3.24 | 2.11 |
Nitrogen% | 0.75 | 0.35 | 0.33 | 0.28 |
Sulfur% | 0.06 | 0.07 | 0.03 | 0.05 |
Oxygen% | 41.95 | 38.67 | 15.17 | 12.94 |
Gross Calorific Value (MJ/Kg) | 18.24 | 20.40 | 23.56 | 28.63 |
Surface Area (m2g−1) | - | - | 297.76 | 434.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suman, S. Conversion of Solid Biomass into Biochar: Act as a Green, Eco-Friendly Energy Source and a Substitute of Fossil Fuel Inputs. Proceedings 2020, 58, 34. https://doi.org/10.3390/WEF-06916
Suman S. Conversion of Solid Biomass into Biochar: Act as a Green, Eco-Friendly Energy Source and a Substitute of Fossil Fuel Inputs. Proceedings. 2020; 58(1):34. https://doi.org/10.3390/WEF-06916
Chicago/Turabian StyleSuman, Swapan. 2020. "Conversion of Solid Biomass into Biochar: Act as a Green, Eco-Friendly Energy Source and a Substitute of Fossil Fuel Inputs" Proceedings 58, no. 1: 34. https://doi.org/10.3390/WEF-06916
APA StyleSuman, S. (2020). Conversion of Solid Biomass into Biochar: Act as a Green, Eco-Friendly Energy Source and a Substitute of Fossil Fuel Inputs. Proceedings, 58(1), 34. https://doi.org/10.3390/WEF-06916